
以大数据促进国家治理现代化
大数据是一场管理革命,“用数据说话、用数据决策、用数据管理、用数据创新”,会给国家治理方式带来根本性变革。
“四个结合”助力国家大数据战略
实施国家大数据战略部署和顶层设计,需要我们做到“四个结合”:把政府数据开放和市场基于数据的创新结合起来。政府拥有80%的数据资源,如果不开放,大数据战略就会成为无源之水,市场主体如果不积极利用数据资源进行商业创新,数据开放的价值就无从释放;把大数据与国家治理创新结合起来。国务院的部署明确提出,“将大数据作为提升政府治理能力的重要手段”“提高社会治理的精准性和有效性”,用大数据“助力简政放权,支持从事前审批向事中事后监管转变”“借助大数据实现政府负面清单、权力清单和责任清单的透明化管理,完善大数据监督和技术反腐体系”,并具体部署了四大重大工程:政府数据资源共享开放工程、国家大数据资源统筹发展工程、政府治理大数据工程、公共服务大数据工程;把大数据与现代产业体系结合起来。这里涉及农业大数据、工业大数据、新兴产业大数据等,我国的产业结构优化升级迎来难得的历史机遇;把大数据与大众创业、万众创新结合起来。国务院专门安排了“万众创新大数据工程”,数据将成为大众创业、万众创新的肥沃土壤,数据密集型产业将成为发展最快的产业,拥有数据优势的公司将迅速崛起。
此外,我国作为世界制造业第一大国,需要高度关注一个现实——大数据重新定义了制造业创新升级的目标和路径。无论是德国提出的工业4.0战略,还是美国通用公司提出的工业互联网理念,本质正是先进制造业和大数据技术的统一体。大数据革命骤然改变了制造业演进的轨道,加速了传统制造体系的产品、设备、流程贬值淘汰的进程。数字工厂或称智能工厂,是未来制造业转型升级的必然方向。我国面临着从“制造大国”走向“制造强国”的历史重任,在新的技术条件下如何适应变化、如何生存发展、如何参与竞争,是非常现实的挑战。
推动大数据在国家治理上的应用
在大数据条件下,数据驱动的“精准治理体系”“智慧决策体系”“阳光权力平台”将逐渐成为现实。大数据已成为全球治理的新工具,联合国“全球脉动计划”就是用大数据对全球范围内的推特(Twitter)和脸谱(Facebook)数据和文本信息进行实时分析监测和“情绪分析”,可以对疾病、动乱、种族冲突提供早期预警。在国家治理现代化进程中推动大数据应用,是我们繁重而紧迫的任务。
在政府治理方面,政府可以借助大数据实现智慧治理、数据决策、风险预警、智慧城市、智慧公安、舆情监测等。大数据将通过全息的数据呈现,使政府从“主观主义”“经验主义”的模糊治理方式,迈向“实事求是”“数据驱动”的精准治理方式。
经济治理领域也是大数据创新应用的沃土,大数据是提高经济治理质量的有效手段。互联网系统记录着每一位生产者、消费者所产生的数据,可以为每个市场主体进行“精确画像”,从而为经济治理模式带来突破。判断经济形势好坏不再仅仅依赖统计样本得来的数据,而是可以通过把海量微观主体的行为加总,推导出宏观大趋势;银行发放贷款不再受制于信息不对称,通过贷款对象的大数据特征可以很好地预测其违约的可能性;打击假冒伪劣、建设“信用中国”也不再需要消耗大量人力、物力,大数据将使危害市场秩序的行为无处遁形。
在公共服务领域,基于大数据的智能服务系统,将会极大地提升人们的生活体验,智慧医疗、智慧教育、智慧出行、智慧物流、智慧社区、智慧家居等等,人们享受的一切公共服务将在数字空间中以新的模式重新构建。
加强大数据动态的跟踪研究
我国要从“数据大国”成为“数据强国”,借助大数据革命促进国家治理现代化,还有几个关键问题需要深入研究。
切实建设数据政策体系、数据立法体系、数据标准体系。以数据立法体系为例,一定要在数据开放和隐私保护之间权衡利弊,找到平衡点。
重视对“数据主权”问题的研究。借助大数据技术,美国政府和互联网、大数据领军公司紧密结合,形成“数据情报联合体”,对全球数据空间进行掌控,形成新的“数据霸权”。思科、IBM、谷歌、英特尔、苹果、甲骨文、微软、高通等公司产品几乎渗透到世界各国的政府、海关、邮政、金融、铁路、民航系统。在这种情况下,我国数据主权极易遭到侵蚀。对于我国来说,在服务器、软件、芯片、操作系统、移动终端、搜索引擎等关键领域实现本土产品替代进口产品,具有极高的战略意义,也是维护数据主权的必要条件。
“数据驱动发展”或将成为对冲当前经济下行压力的新动力。大数据是促进生产力变革的基础性力量,这包括数据成为生产要素,数据重构生产过程,数据驱动发展等。数据作为生产要素其边际成本为零,不仅不会越消耗越少,反而保持“摩尔定律”所说的指数型增长速度。这就可能给我国经济转型升级带来新动力,对冲经济下行压力。
需要建设一个高质量的“大数据与国家治理实践案例库”。国家行政学院一直重视案例库的建设,在中央的重视和支持下,就大数据促进国家治理这一主题,各部门、各地方涌现出大量创新性的实践案例,亟须进行系统梳理和总结,形成一个权威的“大数据与国家治理实践案例库”,以方便全国领导干部进行借鉴和推广。
在大数据时代,个人如何生存、企业如何竞争、政府如何提供服务、国家如何创新治理体系,都需要重新进行审视和考量。我们不能墨守成规,抱残守缺,而是要善于学习,勇于创新,按照党中央、国务院的战略部署,政府和市场两个轮子一起转,把我国建设成“数据强国”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08