
大数据应用于传统行业 为仪器仪表带来转型机遇
如果要问11月有什么特殊的“节日”,你可能也会立马想到“双十一”。每年的这一天都是“剁手党”们的狂欢节,而背后支撑的快递产业更是放话今年将依赖大数据技术,减少以往出现的各项事故。在工信部发布“互联网+”行动战略后,大数据等新一代信息技术被广泛应用到传统产业,其实作为集聚高新技术的仪器仪表领域,也与大数据有着千丝万缕的联系。
所谓大数据,指的是所涉及的资料量规模巨大到无法透过现有的实物计量软件,在合理时间内达到采集、管理并整理出更有价值和意义的结论。这些数据包罗万象,不光包括人们在互联网上发布的信息,全世界的工业设备、汽车、电表上有着无数的传感器,随时测量和传递着有关位置、运动、震动、温度、湿度乃至空气中化学物质的变化,也产生了海量的数据信息。
因此,大数据也被称为是继云计算、物联网之后信息技术领域的又一次颠覆性变革。
从日常生活中的钟表、水表、电工仪表到科学研究领域的光谱分析仪、重力传感器,仪器仪表作为机械设备的灵魂,仪器仪表的本质就是数据的获取工具,被誉为大数据的”采集器“,自然拥有海量的“大数据”。然而大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理,通过“加工”实现数据的“增值”。大数据已经成为了新发明和新服务的源泉。
大数据平台的出现让仪器仪表企业开始意识到掌握这套采集数据可以做更多的事情,比如在生态环境监测领域实现智能化。今年7月,国务院办公厅发布了《生态环境监测网络建设方案》,对我国生态环境监测网络建设确立了清晰的行动纲领,环保部副部长翟青提出,完善生态环境监测网络需要数据的互联共享与大数据平台支撑,通过建立环保大数据中心,依靠大数据的海量数据存储与超高效处理能,整合相关部门内部分散数据形成庞大的数据中心体系,为生态环境保护决策、管理和执法提供数据支持。
据悉,各省市地区环保部门和监测中心均已全面启动监测网络的建设规划,例如广东省环境监测中心就已在2015年最新工作计划中,将大数据中心升级改造加入重点工作内容,并在此基础上实现各业务系统的统一整合与数据共享。
此外,也有越来越多的仪器仪表企业开始走上向一体化进程转型升级的道路,他们不再仅仅满足于提供计量的产品,更是升级到完善的解决方案,利用自身采集数据的便利,掌握用户的需求,从而提供出更丰富、全面、时效的服务,促进企业创新升级和产品应用推广。
这种新的变化趋势也同时在影响新的产品与服务设计理念和设计过程本身。为进一步掌握更全面的服务信息,抓住用户需求,未来的仪器仪表产品将在传统设计中融入数据服务界面,造就更适合更具有现代特征的新品。大数据将为人类的生活创造前所未有的可量化的维度,相信定会有更多的改变正蓄势待发。
如今,一个大规模生产、分享和应用数据的时代正在开启。正如“大数据时代的预言家”维克托教授所说,大数据的真实价值就像漂浮在海洋中的冰山,第一眼只能看到冰山的一角,绝大部分都隐藏在表面之下。大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理,通过“加工”实现数据的“增值”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10