
信用卡客户价值分析
让历史告诉未来。客户价值分析就是通过数学模型由客户历史数据预测客户未来购买力,这是数据挖掘与数据分析中一个重要的研究和应用方向。RMF方法就是让历史告诉未来的趋势分析法,利用RMF方法科学地预测老客户未来的购买金额,然后对产品成本、关系营销费用等进行推算,即可按年、按季度、按月预测出客户未来价值。这里以信用卡为例,讨论和分析信用卡客户价值。
对银行而言,预测客户未来价值能够使银行将传统的整体大众营销推进到分层差异化营销、一对一差异化营销的高度,对不同的分层客户采取不同的营销模式、产品策略和服务价格,从而推动和促进客户购买交易。
根据RFM方法,“客户价值”预测模型为:
客户未来价值 = 银行未来收益 – 未来产品成本 – 未来关系营销费用
对于信用卡客户,我们定义此处的“未来”是指未来一年(也可以是未来一季度)。“银行收益”包括信用卡年费、商户佣金、逾期利息,以及其他手续费等;“产品成本”即产品研发、维护和服务成本,包括发卡、制卡、换卡和邮寄等费用,以及其他服务费用;“关系营销费用”即关系维护和营销成本,包括商户活动、积分礼品兑换、营销宣传等。
RFM方法是目前国际上最成熟、最通用、最被接受的客户价值分析的主流预测方法。实际上,RFM方法是一整套客户价值分析方法中的一部分(其中,R:最近购买日Recency,F:购买频率Frequency,M:平均单次购买金额Monetary),但是RFM方法最具有代表性,其它还包括客户购买行为随机过程模型、马可夫链状态移转矩阵方法、贝氏机率推导状态移转概率方法和拟合回归分析方法等。
由于“银行收益”包括信用卡年费、商户佣金、逾期利息,以及其他手续费等,这里统一称为“购买金额”。因此,“客户未来购买金额”预测模型为:
客户未来购买金额 = 未来购买频率 * 未来平均金额 * 未来购买频率概率 * 未来平均金额概率
其中,未来购买频率、未来平均金额、未来购买频率概率、未来平均金额概率均可通过客户购买行为的随机过程模型来描述和求解。对于信用卡客户,“客户购买行为”包括刷卡、透支、取现、支付、分期等,以及客户消费习惯、还款习惯、收入贡献、信用额度、用卡来往区间、逾期时长、进件通路、客户服务和副卡的客户购买行为等。
根据RFM方法预测过程,随机过程模型除了推导和计算客户未来购买频率概率、未来平均金额概率的密度分配之外,还隐藏着客户未来购买频率、未来平均金额的状态移转期望值和概率。因此,除了使用随机过程模型之外,还需使用贝氏机率方法推导状态移转期望值和概率。
此外,要科学地分析和预测客户未来价值,有必要用长度和宽度的二维样本数据建立一套牢固、可靠的随机过程模型,样本越大,客户未来价值的预测结果就越接近未来的事实。其中二维样本数据是指客户购买频率与购买金额是两个相互独立的不同的行为维度,不具有相关性。
RFM方法只能预测客户未来购买金额(或银行未来收益情况),却不能预测出未来产品成本和关系营销费用。而采取平均法或移动平均法将客户历史价值、历史关系营销费用直接应用到客户未来,显然不适合;同样,采取RFM方法的概率分析方法来推断客户未来价值也是不适合的。因为未来产品成本和未来关系营销费用并不是源自客户的随机行为,而是由银行整体产品成本控制和差异化营销决定的,其未来变化不一定按趋势平滑,未来客户的情况可能会出现逆反或抖动。因此,预测未来产品成本和关系营销费用需要采取其他方法。
首先要明确,未来产品成本和未来关系营销费用并不是随机现象,而是遵循各自发生的规律;且客户未来关系营销费用服从客户历史关系营销费用与购买金额的比例,即服从关系营销投入产出比。对于信用卡客户而言,通常以“年”为最小期数进行分析和预测,历史区间和未来区间是连续的,即两者之间无交易期数。所以,未来产品成本和未来关系营销费用的变化符合银行整体产品成本和营销费用的线性拟合回归规律。
因此,对于信用卡客户,“未来产品成本”预测模型为:
未来产品成本 = 未来购买金额 *(1-CRM毛利率),CRM毛利 = 购买金额 – 产品成本 – 关系营销费用
对于“未来关系营销费用”,定义:
Ratei = ∑客户历史关系营销费用/∑客户历史购买金额
Expensei = 客户历史最小关系营销费用(须大于0)
Monetaryi = 客户未来购买金额
X = Monetaryi * Ratei
因此,如果X>Expensei,那么“未来关系营销费用”=X。否则,如果Monetaryi<Expensei,那么“未来关系营销费用”=X;如果Monetaryi≥Expensei,那么“未来关系营销费用”=Expensei。
从以上分析,客户价值 = CRM毛利 = 购买金额 – 产品成本 – 关系营销费用。因此,在完整的客户关系生命周期内(即从建立关系到未流失的最近一次交易),分析客户未来价值的意义远远大于分析客户历史价值,因此通常意义上的客户价值分析就是对客户未来的价值进行分析和预测。
对于预测出的客户未来价值的结果,可按客户价值分层,并将传统的整体大众营销推进到分层差异化营销、一对一差异化营销的高度,其立足点就是客户价值的差异化分析。
通过分析和预测客户未来价值,即可清楚一旦高端客户、大客户流失将会造成未来怎样的利润损失,也可以挖掘出那些临近亏损或负价值的客户,并进行置疑分析,找出对策。但同时也要认识到,即使预测出客户的未来价值较高,也只能说明其价值势能(即潜在购买力)较高,坐等客户主动上门的价值动能(实际购买力)是不现实的,还需要通过其他沟通交流和营销渠道(如人工坐席外呼、短信发送、微博私信、微信、邮件推送等)与客户互动,推动客户追加购买、交叉购买。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25