
从事数据挖掘这行的话我还需具备哪些条件(硬件、软件)?
在人工智能领域,数据挖掘(Data Mining)是资料库知识发现KDD(Knowledge Discovery in Databases )中的一个步骤,通过它可以从大量数据中获取有价值又新颖的信息。最著名的例子是,在沃尔玛一家超市里,尿布和啤酒赫然摆在一起出售。奇怪的货品摆放让尿布和啤酒的销量双双增加了。原来是沃尔玛通过数据挖掘发现,跟尿布一起购买最多的商品竟是啤酒!在美国,一些年轻父亲下班后经常要到超市买婴儿尿布,而他们中有30%~40%的人同时也会为自己买一些啤酒。瞧,数据挖掘真的可以发现一些潜伏在水面之下的秘密。一份报告指出,数据挖掘会成为未来10年内重要的技术之一。
从目前来看,从事数据挖掘工作,需要有较强的数学功底和扎实的统计学功底。在计算机技能方面,需要精通IBM IM/SPSS Clementine/SAS EM等工具,熟悉Unix操作系统,熟悉DB2/Oracle等大型关系数据库,具备Shell/Perl/TCL/C/C++等编程能力,能够自编挖掘算法、进行商业统计分析、预测。熟练掌握Microsoft Office软件,包括Excel和PowerPoint中的统计图形技术。
对于这个职业,目前市场提供的培训有Oracle数据仓库与数据挖掘培训、SAS全球专业认证和SPSS中国的培训,国内则有国家数据分析师(NTC-CCDA)认证培训。
除了专业知识还需要有一定的行业知识。当前数据挖掘应用主要集中在电信、零售、农业、银行、电力、生物、天体、化工、医药等方面,若你想从事某个行业的数据挖掘,还需要尽快深入了解这个行业。
此外,你还需要有良好的团队合作精神,能够主动和项目中其他成员紧密合作,因为数据挖掘涉及方方面面的关系,非常讲求公司内部的合作。
当然,良好的客户沟通能力也很重要。要掌握一些CRM(客户关系管理)知识和理念,明确阐述数据挖掘项目的重点和难点,调整客户对数据挖掘的误解和过高期望,让模型维护人员了解并掌握数据挖掘方法论及建模实施能力。你还要善于将挖掘结果和客户的业务管理相结合,向客户提供有价值的可行性操作方案。
这一行的职位除了技术要求很高的数据挖掘和算法工程师外,还有数据采集分析专员、市场数据分析师。数据采集分析专员的主要职责是把公司运营的数据收集起来,从中挖掘出规律性的信息来指导公司的战略方向。数据采集分析专员很容易获得行业经验,在分析过程中能够轻易把握行业的市场情况、客户习惯、渠道分布等关键情况,如果想在某行创业,从数据采集分析专员干起是一个不错的选择。而市场数据分析师是现代市场营销科学必不可少的关键环节,市场数据分析师可以根据产品结合目标市场顾客的家庭收入、教育背景和消费趋向分析出哪些地区的住户或居民最有可能响应公司的销售广告成为客户。可以说,他们能为直接面向客户的市场营销提供极大的帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07