京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据还是太多信息
移动互联网时代的数据正在疯长,大数据是现在技术界最热的流行语之一。一种普遍的观点认为掌握实时数据分析与决策能力者必能占得先机,但也有人认为数据再多也无法帮助我们预测未来,我们把这两种观点编译如下,也请大家谈谈自己的看法。
我们都知道现在地球上的信息太多,但是怎么多法,没有人知道。
IBM负责超级计算机研发的Dave Turek给了我们一个答案,根据IBM的估算,人类自有史以来至2003年所创造的信息量为5艾字节(50亿GB),而到了去年,人类每两天就产生了如此多的信息量。据Turek的预测,到明年的时候,我们生成这样规模的信息量只需要10分钟!
这怎么可能?!数据为何滥生到了这种地步?这么说吧,每次你的手机发送其GPS位置,每次你在网上买东西,每次你点击社交网络上的“喜欢”,你就给数字信息的海洋奉献了一个水滴。现在这片海洋大部分已经为此类数据所覆盖。
短信、客户记录、ATM交易、监控摄像……这条清单可以列得很长。我们有一个流行语总结这些东西:“大数据”,尽管这个词难以表述我们所创造的这个怪物的规模。
这是技术超出我们使用能力的一个最新例子。在这个例子里,我们还没能跟上自己捕捉信息的能力,所以这段时间管理大师总喜欢说未来属于能善用自己所收集数据的公司,尤其是具备实时利用能力者。
对于企业来说,能够解析自己客户的每一个数字化的蛛丝马迹者必将拥有领先优势,这种能力不仅仅在于能够了解过去几个小时里谁在哪里买了什么东西,而且还能够知悉他们是否对此发表了微博、有没有在社交网络上发过相关相片。
城市亦是如此。能够收集成千上万个传感器的数据,然后描绘出都市的数字化地图,并能够将城市生活的异常行为(如交通流量)变成科学的一定能够脱颖而出。
不奇怪的是,政治运动也已经开始这样的尝试,发疯地挖掘数据已经成为政客聚焦“纳米定位(nanotargeting)”选民策略的一部分,这样才能够精准地知道如何才能捞到选票。
寻求对零碎数据进行解释的狂热解释了Google上周为什么要开始销售一款名为BigQuery的产品,该软件可以在数秒钟之内扫描几TB的信息。也正因为此,数据分析初创公司Splunk上市首日的股价即飙升了90%。
数据科学家的崛起
但是,哪怕你拥有最好的数据解密工具也不能保证就能拥有大智慧。很少有公司拥有专门受训的员工,缺乏评估堆积如山的数据(包括数百万社交网络页面、智能手机上的非结构数据)的能力,更不用说对此做些什么。
去年麦肯锡发布了一份报告,把“大数据”形容为“创新的下一个前沿阵地”,但该机构同时也预测说到2018年,美国公司在这方面将会出现严重的人才短缺,具备必要的分析技能的人才缺口多达19万之巨。同时还认为美国具备数据知识的经理的需求将会超过150万(中国呢?)。
信息超载?
尽管如此,并非所有人都相信大数据的魔力。沃顿商学院的Peter Fader教授并不认为数据越多越好。同时他也不认为企业应该竭尽所能去了解自己的客户。他认为现在对数据聚合的关注太多了,而实际上,只有围绕着真正的分析进行的数据收集量才有意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28