京公网安备 11010802034615号
经营许可证编号:京B2-20210330
营销大数据:盈利的秘诀
尽管我们现在拥有着比以前更多的有关消费者的有价值的数据,但只有12%的公司将这些大数据信息投入使用。大数据已经成了很热的词,但是许多营销专家和销售人员依然不知道如何去处理这些我们所能获得的信息。
与此同时那些使用了大数据的公司通常是以很杂乱的方式处理的:营销部门获得了数据但不知道如何利用,销售部门关注的始终都是些少量、具体的数据,所以面对如此庞杂的数据很容易信息过载。
因此两个部门合作共享信息,各取所利是很难的。
在我们分析那些销售部门和营销部门是如何利用大数据合作以帮助公司之前,让我们先来看看大多数公司事实上是怎么做的。
营销部门在不同系统内收集和管理数据,其中有一两个是有效的(通常是客户关系管理系统和网页分析系统)。销售部门关注消费者导流,但是没有时间分析数据。营销部门拥有大量难以利用的数据,销售部门并没有从营销部门得到足够有用的信息,能推动消费者引流。
事实是花些时间处理那些数据是大有好处的。现实表明,那些利用和分析大数据的公司要比他们的同行在生产率和盈利率上有5-6%的提高。尽管挖掘大数据是个巨大的时间投资,但这项工作可以减少营销和销售部门因走错方向而花费的精力,因此是可以增加最终利润的。
当销售部门和营销部门合作时,有趣的事情发生了。他们开始能更好地理解消费者行为,而这使得这两个团队能执行更好的营销活动以及目标更明确的销售行为。他们可以根据消费者是处于购买生命周期的哪个位置而制定针对性的整合营销方案。当然,这两个部门也可以协调一致增加更多销售额。
如果你的销售团队没有关注消费者的线上活动,那么显然浪费了很多时间。让我们举一个Stephanie的例子,她在一家公司工作,这家公司需要提供云计算的解决方案,而她是决策者。
一个典型的消费者在消费行为路径中会有以下三步:
触发步骤是指Stephanie所看到或听到的引起了她对解决方案的兴趣。为了帮助Stephanie进入这一阶段,营销部门可以给销售团队提供那些曾经引起其他消费者们关注云计算解决方案的有用信息。然后,销售团队可以通过社交网络分享那些信息(营销部门可以在更广的范围内作相同的事情)
触发步骤中有用信息举例:
一旦Stephanie被打动开始寻找解决方案,那么她就开始了调研这一步。如果你收集有关Stephanie的数据,你就会看到她已经点击了好几个有关云计算的广告并且访问了那些网站。她也在微博上搜索以寻求云软件的使用者喜好的建议。她浏览了一些小的商业博客甚至下载了一本名叫“如何为你的企业选择最好的云平台”的电子书。她已经喜欢上了你们软件公司的脸谱主页,并且分享了一些你们的内容。
营销部门之于销售团队来说可以做出的关键贡献在于帮助他们提供给Stephanie(以及喜欢Stephanie的人们)一些信息去引导她调查。
调研步骤中信息举例:
当她准备购买时,便开始了这一步。这个时候,Stephanie并未和任何销售人员交流便完成了消费者路径中的大部分内容。她在线上通过和同伴、分析者们沟通完成了大部分工作。当她准备去购买时,她还需要去证实或者否定她的想法即你们的解决方案对她而言是否合适。
营销部门之于销售团队可作出的关键贡献在于帮助他们了解到这个时候Stephanie可能在想些什么,并且为那样的对话做准备。
购买步骤中的信息举例:
营销部门拥有着关于消费者的数据—有的时候甚至比它所知的可处理的还要多。面对大数据,我们无须害怕。它仅仅是让我们学会处理信息,发现怎样的信息对营销活动是最有用的,又是怎样的信息对销售部门是最有帮助的。通过和销售部门的紧密合作,营销部门便能有效促进盈利。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06