
大数据时代的三个思维变换
维克托·尔耶·舍恩伯格在《大数据时代:生活、工作与思维的大变革》中最具洞见之处在于,他明确指出,大数据时代最大的转变就是,放弃对因果关系的渴求,而取而代之关注相关关系。也就是说只要知道“是什么”,而不需要知道“为什么”。这颠覆了千百年来人类的思维惯例,对人类的认知和与世界交流的方式提出了全新的挑战。
知名IT研究机构Gartner以它对专业IT市场的“魔力象限图”发布作为一种评价方式,在其二维矩阵里,横轴是前瞻的完整性,纵轴是执行力,如果用此分析方法来评价《大数据时代》这本书,它大概位于右下角靠近纵轴中间点的位置。
2012年,笔者看过的3本有关大数据的中文书,它们分别是《证析》、《大数据》和维克托·迈尔·舍恩伯格的《大数据时代》。与其他两本相比,舍恩伯格这本书的特点重在“Impact Analysis”的前瞻分析,在大数据时代的思维变迁方面有启发价值。也说是说,此书对于企业高管和CIO的价值更大,它基本没有太多讨论技术,而偏重于观念转移(Paradigm Shift)。
简单说来,这本书的价值可以用两个“三”、一个“一”来概括:第1个“三”是3个关于大数据的思维变换,重在大数据变革时代的价值与观念变化;第2个“三”是关于大数据影响商业变革的3个要素:即数据、技术与创新思维之间的互动;一个“一”是关于大数据泛化下的治理与隐私。
关于大数据本身的价值已无需赘述,此处重点讨论关于大数据的3个思维变化:1.不是随机样本,而是全体数据;2.不是精确性,而是混杂性,尤其是大数据的简单算法比小数据的复杂算法有效;3.不是因果关系,而是相互关系。
《大数据时代》一书提醒读者,大数据是全数据,至少维度要全,这带来了观察和分析事物的角度变化,尤其相对于传统IT系统数据,大数据强调了数据的外部性和实时性,这两个特性也使得“证析”提到的基于事实(Evidence)的分析成为可能,不过此书忽略了外部数据与企业内部数据结合的分析价值。比如,对于政府来说,分析大范围的公共卫生事件、传染病可以更快地利用大数据(比如微博)发现目前的情况,但具体要调度资源,还是需要结合“小数据”的精确决策。
第2点的核心观念关于大数据的简单算法来自谷歌的洞见,也来自于Hadoop(一个分布式系统基础架构,由Apache基金会开发)这类算法的核心理念。大数据的简单算法是一种统计学的逻辑,这个如同热力学的分析模式,热力学并不关心具体的分子运动,而是关心温度、体积、压强之间的宏观联系,关于这种理念的内在理解,建议读者从吴军的《数学之美》一书中获得,只有真正理解了大数据基于统计学的思维方式,才能理解它的独特优势和局限。这种方式可以解决以往技术无法解决的大范围、实时性和并行处理等问题,并带来新的洞见,它用概率说话,并不是和人就细节较真。这个来自互联网公司的观念是,希望先解决80%的趋势问题,然后慢慢精细化。
第3点,大数据关注“是什么”,而不是“为什么”,经常网购的人会更容易体会。很多电商网站的推荐引擎具备这种能力,它能够在顾客买书的时候,推荐顾客刚好喜欢的其他书籍,顾客可能不知道“为什么”,其实网站也不在乎“为什么”,(“为什么”可以由学术专家慢慢分析)。但是网站根据成千上万甚至上亿人的统计学分析,就可以发现“关联物”,或者说大数据更擅长通过统计分析人类所不能感知的关联,并建议人采取行动。
这个革命式的思维非同小可,以前“啤酒+尿布”的数据仓库故事需要数据整理、清洗转换和专家建模挖掘,其采购行为的关联性可能被Hadoop等算法轻易的发现。上述方式由于分析门槛低,已经成为一种常见的工具,并衍生大数据的云服务的商业模式,成为企业可以购买的“分析即服务”(Analytics as a Services),国内阿里系正致力于这种模式的建立。
第2部分关于大数据商业模式方面,最有价值的是关于大数据商业生态的分析,除了大家熟知的数据、技术,作者认为还有第3种基于思维的大数据公司,包括数据中间商等等,这对于国内过于关注技术本身的趋势是个很好的提醒。一个有趣的话题是,作者认为基于统计的数据科学家会逐步取代行业专家,因为大数据发现的新的真实联系,可能会颠覆传统行业专家,这个话题学术界可能很感兴趣。
一个耐人寻味的例子是,基于大数据统计分析的自然语言翻译几年前就胜过了基于语义理解的语言学家派别,书中提到的一个从事语言翻译的算法小组甚至开玩笑地说,“每次我们组走了一个语言专家,我们的翻译精确度就提高一些”。
第3部分是关于大数据成为乔治·奥威尔《一九八四》里的“老大哥”,即通过技术手段实现了无处不在的监控以后,隐私和滥用的问题最为让人担心。笔者认为这个话题过于公共,而且已有很多文章在讨论,并不是本书的特质,况且大数据的兴起是一个渐进的过程,各个行业的实用案例尚在兴起,行业内部应专注于行业创新,关于公共的话题的讨论还是留给学者、政府和未来。
西方作者有一类是理念的鼓吹者,最著名是《失控》的作者KK(凯文·凯利),此类被读者推崇为传教士的作者,喜欢推广颠覆式的观念,产生一种前世今生(Before/After)比较的震撼力。本书作者也是如此,如此颠覆,强力的大数据时代似乎正在到来,然而,此类作者也会被人指责为“管杀不管埋”——提出理念,不对具体的可行性负责。回到前文提到的Gartner的“魔力象限图”,渐进的执行力才是大数据这种趋势逐步在各个行业开花的关键。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17