京公网安备 11010802034615号
经营许可证编号:京B2-20210330
探索互联网+信用监管 大数据开启市场监管新模式
提及“大数据”监管的前景,浦东市场监管局相关负责人透露:“网络订餐行业只是我们探索‘互联网+信用监管’的第一步,今后,我们还将向各个行业、各个领域推行‘大数据’监管模式。我们的信息资源将逐步向全社会敞开大门,欢迎社会各方加入共治行列,与我们一起共筑市场安全防线。”
8月底,浦东市场监管局与网络订餐平台“饿了么”启动“互联网+信用监管”项目,率先探索政府数据走出“深闺”,与第三方平台实现数据多方共享。记者获悉,试点近一个月下来,仅在先行试点的陆家嘴地区,浦东市场监管局已向“饿了么”推送商户信息371家,数据量达到12万。“饿了么”也已将政府监管信息以20%的比重纳入其信用评价体系。浦东新区走出了通过“大数据”,参与食品安全监管过程的第一步。浦东市场监管局透露,本月底提前将该项目从陆家嘴地区覆盖至浦东全区。
“脸谱”反映食品安全状况
细心的用户张先生最近在使用“饿了么”订餐时发现,平台上的一些商户信息中都不约而同地挂上了“脸谱”符号,点开“脸谱”,商户的营业执照、餐饮服务许可证和食品安全监督公示信息跃然屏上。这些数据正是由浦东市场监管局与“饿了么”对接,并向全社会开放共享的。“脸谱”分为笑脸、平脸和哭脸三种,形象地反映了商户的食品安全状况,便于消费者选择优质、安全的餐饮服务。
说起数据开放共享的缘起,第三方网络订餐平台“饿了么”CEO 张旭豪颇为感慨:“我们曾接到过消费者反映,称有的商家上传的证照信息和实际经营状态是不一致的。”张旭豪表示,“饿了么”一直设法加强对入网商户的规范化管理,要求经营者必须上传证照扫描件。但是很多信息还是无法准确掌握,在资质审查时确实有困难。
浦东新区市场监管局副局长管捍东也表示,之所以选择“饿了么”试点“互联网+信用监管”项目,除了考虑到“饿了么”规模、影响都比较大,也是因为“仅凭第三方平台线上核查,或是单纯依靠政府部门线下监管,力量都是有限的”。
项目试水一个月效果如何?消费者孙女士直言,以往订餐时餐厅的信息并不透明,自己只能参考订单数量和用户点评来判断餐厅的还坏,“现在就直观多了,我肯定会优先选择资质齐全、带‘笑脸’的餐厅。”孙女士不知道的是,她做出的个体选择还将汇集成市场选择,成为食品安全监管的间接推动者。如果发现公示信息与实际情况不符,消费者也可以及时向平台和监管部门反映,促进行业规范和市场监管到位。
“黑暗料理”将被清退
据介绍,上海浦东新区先行在餐饮店数量多、监管难度大的浦东陆家嘴地区试点“互联网+信用监管”项目。消费者通过第三方平台进行网络订餐时,就能对接政府“大数据”,参与食品安全监管过程。陆家嘴地区汇集了近900家餐饮单位,接近浦东全区的十分之一:“饿了么”在陆家嘴地区“饿单”日均接单量占全区30%,目前,浦东市场监管局已向“饿了么”推送了陆家嘴地区商户371家,内容包括工商信息、许可证信息和监管信息,数据量达到12万。
与此同时,“饿了么”已将政府监管信息以20%的比重纳入其新制定的信用评价体系,以此对商户进行综合信用质量评分和排序,并将配套采取关闭网店、停止网上经营、通报政府部门等手段,加强对入驻商户的线上管理和联合惩戒,以提高第三方平台餐饮服务的整体诚信度。
“饿了么”方面表示,今后将杜绝无证照餐饮入网经营,新入网商户需先上传相关证照,经平台方线下现场核查、实名登记后,再与浦东市场监管局数据库线上比对。只有数据完全匹配,才能在线上开店经营。
“饿了么”会员王女士最近就遇到了这样一件事。她经常光顾的一家平台商户突然不见了踪影。后来她才知道,原来这是一家卫生状况很差、无证照的“黑暗料理”,现已被市场监管部门和第三方平台联手清退了。
据初步统计,“互联网+信用监管”项目试点一个月以来,陆家嘴地区“笑脸”商户订单量平均上涨约15%,而资质不全的无脸谱商户订单量有一定比例的下降。
“互联网+信用监管”只是第一步
浦东新区市场监管局相关负责人透露,一个月间,监管局共接到涉及“饿了么”的食品安全类投诉35起,均通过平台同步流向“饿了么”,进行解决。监管部门在线下处置实体商户的同时,“饿了么”也同步完成处置和回访,并对所涉商户作出线上信用评价记录、督促整改。
提及“大数据”监管的前景,浦东市场监管局相关负责人透露:“网络订餐行业只是我们探索‘互联网+信用监管’的第一步,今后,我们还将向各个行业、各个领域推行‘大数据’监管模式。我们的信息资源将逐步向全社会敞开大门,欢迎社会各方加入共治行列,与我们一起共筑市场安全防线。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12