京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,如何评价人才
问:目前,人才评价工作中存在的突出问题是什么?
答:人才评价工作非常重要,是人才发现、引进、培养、选拔、使用、激励的依据。传统上,对人才的评价是经验性评价,是对已有成果、已有资历作出的判断。
问题是,当今世界充满了不确定性、风险性和不可预测性。过多关注过去的人才评价模式有很多局限性,尤其不适合创新型人才引进评价,而且特别不适合海外年轻拔尖人才引进评价。因为,创新型人才是发展中的人才,需要的是面向未来的评价,是“加油站”式的评价,评价要能为他们的未来发展加油鼓劲。
问:大数据将给我们的人才评价工作带来怎样的改变?
答:人才评价的一个极为重要的作用是发现和甄别人才,基于此的人才评价要为人才使用和发展服务,要特别重视未来,而不是过去。而大数据最重要的功能,是能把未来一些不确定性的东西准确地预测出来。2008年,谷歌的一支研发团队利用在网上收集到的海量个人搜索词汇数据,赶在政府流行病学家之前两星期预测了甲型H1N1流感的暴发。这样的事情在以前是不可想象的,掌握了大数据后,谷歌就做到了。
大数据浪潮,让人类在历史上第一次有机会用数据围绕一个东西形成完整的描述。凭借日益增强的数据分析能力,人类得以有效实现对未来的预测。大数据可以帮助人们提升人才评价的整体水平,解决人才评价面向未来的问题。
问:历史优秀的人才,不是更有可能取得更大成就吗?
答:这可不一定。很多人评上教授后,可能一生都一事无成,人不是一定会越变越聪明的。社会进步需要更加有潜能、更加能创新的人,而这些人绝对不是单凭学历、职称就能看出来的。
精确度提高
问:人们常说要慧眼识英才,大数据能替代伯乐的直觉吗?
答:正是因为掌握数据的不充分,才逼得我们不得不依靠直觉。历史发展到今天,人才更为丰富多样,伯乐的直觉已不能满足现实需要。丁肇中先生就说过,同行评不出来创新人才,因为他们都是用已有的知识来评价人才,而创新人才是要面向未来的,不是一个模子刻出来的。只有大数据才能解决这个问题。
考察一个人,要有足够的数据情报,这就是美国中情局的强项——对关键人物数据掌握得非常细致。他们会不择手段,挖掘全部数据。你从哪个医院出生,父母怎么样,几岁还在尿床,小学犯过什么错误,中学有什么劣迹,大学时谈了几次恋爱,做过什么股票,亲戚有没有贩毒……都在掌握之中。他们能从一个人高中时经常上树判断出他“个性叛逆”。这些正是我们在人才评价中欠缺的。
问:是不是可以这样理解,大数据带来的不仅是信息技术领域的革命,它正在改变着我们理解世界的方式?
答:是的。迎接大数据时代,需要形成“大数据思维”。大数据不仅是一种实用工具,而且是一种思维方法。美国的卫生防疫部门积累了多少年,人才、专业上都有绝对的优势,为什么干不过谷歌?因为谷歌不和你拼专业,它拼的是信息采集量和掌握量。
大数据时代,分析事物之间的联系,不再限于线性联系,而是特别重视事物的相关性。现在美国卫生防疫部门也在做出改变,效果明显。比如,他们会监控全纽约200多万人上班刷卡的数据,刷卡情况会直接汇总到应急中心,如果有一天10%的人没刷卡,他们就开始启动疫情分析工作。
问:我们从中能借鉴什么呢?
答:对人才信息的采集、利用要给予更多关注。我们现在的问题是,搜集一个“坏人”(罪犯或贪官)信息所下的功夫,远比搜集一个“好人”信息要多得多。如果我们肯像搜集“坏人”信息一样去搜集“人才”信息,人才评价问题就解决了。
全球化视野
问:大数据运用到人才评价,应从何处入手?
答:如何最快捷地让社会接受新的理念?要从技术上入手解决。比如,“花未来的钱”的观念,中国通过推广信用卡做到了。信用卡,不光是方便,更大功能在于刺激消费。我们这个世代崇尚存钱的国家,接受消费文化这么快,就是因为先从技术上入手了。
大数据时代的人才可以出现在世界任何一个角落,他可以为世界上任何一个公司效力,人才国际化将全方位开启,人才战争将比以往更为激烈。谁能尽早把大数据体系建立起来,谁就能在新一轮人才战争中占据主动地位。全国性大数据平台的建立,还将直接减少研发成本,少走弯路,缩短研发周期,促进科研人员迅速取得一些创新成果。
此外,针对违法犯罪分子,我们普遍采用了测谎仪,如果科研人员愿意用同样的技术下功夫,制造出一个潜能仪,恐怕什么样的人才都能评得准。
问:这么说,对数据量的占有将非常关键?
答:对。国际猎头能准确找到人才,就是因为占有了海量数据。我们没有大数据,就只能在不充分的情况下进行人才评价。大数据能够帮助人们解决这个问题,从理论上讲,凡是符合条件的人都可以进入评价视野,这就解决了“少数人从少数人中选人”的弊端和评价标准粗放简单的问题。
问:大数据思维和手段,对创新人才的发现与评价会有帮助吗?
答:大数据的相关性视角,将为发现和评价创新人才打开一个新的天地。创新成果的产生,大多数还是和兴趣有关系,不是跟他的任务有关系,和项目的关联性不如与兴趣的关联性。人类历史上,最具原创性的科学发现,都源于一些偶然性的因素,钨丝的发现、青霉素的发现、火药的发现……很多都是来自原定计划的失败,甚至是事故。
20世纪70年代,澳大利亚两个学者,认为在高酸度胃液下生活的幽门螺旋杆菌是导致胃病的原因。论文发表时,遭到同行嘲笑,大家认为高酸环境下细菌是生存不了的。后来,基于他们的研究,药厂开发出相关药物,他们才获得认可并获得诺贝尔生理学或医学奖。我相信,在大数据时代,这样的创新人才将迎来前所未有的光明未来。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27