
智能手表的大数据价值源于整合
在可穿戴设备产业中,当前最受大众关注,以及大众认知度最高的产品“三剑客”,是智能眼镜、智能手表、智能手环。不论是哪种形态的可穿戴设备,其核心价值都是围绕着数据展开。不论是对数据的采集、挖掘,还是可穿戴设备本身价值的挖掘都离不开数据。但是当前可穿戴设备基本都还没进入到数据价值的环节,整个产业基本都还停留在硬件产品本身。
从目前的产业情况来看,经历了这几年的发展之后,可穿戴设备的相关从业者已经较初期有了更多的思考。从应用层面来看,已经从之前的运动监测为主的功能拓展到了医疗监测、金融支付、安全定位、智能控制等方面。基于手表的可穿戴设备是目前可穿戴设备产业中最热门的形态,不论是从产品的功能、产品的数量、创业者数量层面来看,都是NO.1,而促成这种局面的关键因素是苹果公司在这个领域的介入。
从目前整个市场的情况来看,主要由以下三股力量在共同推动智能手表产业:第一类是科技公司,比如苹果、三星、LG、华为、摩托罗拉等,这类公司主要借助于自身在通讯领域的优势来打造智能手表。不过苹果的不同之处是改变了整个智能手表产业的发展路径,一方面重新定义了当下智能手表的价值,将智能手表变得更加时尚;另外一方面则是推动了整个产业链技术的进步。第二类是传统钟表公司,主要是受苹果Apple Watch的影响,传统钟表业不得不发力智能化,这也在一定程度上促进了市场的形成。第三类是创业者的进入,主要以细分市场为切入点,比如儿童、老人、娱乐、支付等。
不论是哪一类企业,从目前的产业情况来看都难以形成有效的大数据价值。大部分的智能手表目前所面临的处境都不容乐观,一方面是使用者有限,主要是产品过于分化、多元;另外一方面是使用时间短,也就是通常所说的产品缺乏粘性。在这两种因素之下,开发者就很难获得有效、足量、有价值、有意义的数据,而目前大部分获得的数据可谓是“脏数据”。一旦没有足够的数据采集样本,就很难为算法的修正提供有效价值,这也就在一定的层面上制约了当前监测数据准确度的提升。
不论是从提升算法技术层面,或是从获取有效数据进行价值挖掘的层面来看,对于智能手表而言当前最重要的是对所采集的数据进行整合,也就是对于当前碎片化数据的智能手表产业而言,要想实现大数据价值的前提在于整合。因此,在我看来要想比较快的实现智能手表的大数据价值意义,有以下三点建议:
1、发挥行业协会的价值。由钟表协会,或者是相关的产业协会牵头,联合相关企业或者是相关部门推出智能手表的专用系统平台,以及相应的云服务接口,并开放给所有的智能手表企业使用。对于当前而言,只有将碎片化的智能手表市场集中起来,才能有效地总结经验、发现问题、修正问题、解决问题。
2、发挥相关企业的力量。由相关企业自愿联合,共同推出一个专属的智能手表系统平台,同样包括相应的云服务接口,并开放给所有的智能手表企业使用,并将所采集到的数据分享给所有接入的企业,或者是由联合成立的公司专门成立相应的研究部门,对所采集到的数据进行挖掘、加工、处理,将所得到的结果,包括算法技术的完善等优先提供给接入的开发者使用。
3、专业的第三方服务公司。以智能手表产业为垂直点,围绕智能手表的系统平台、数据安全、数据采集、数据挖掘等方面,专业为智能手表的开发者提供软系统层面的服务,并由此来构建相应的盈利模式。
不论是以以上的哪种形式,或者是其他形式出现,对于智能手表产业而言要想有效地步入正轨发展,当务之急就是如何解决由产品过于碎片化所带来的数据碎片化问题。不同开发者在进入智能手表产业时,在本身资源有限的情况下做着很多重复的投资工作。每个企业都应该自己搞一套体系,比如APP的开发、算法的建立、云平台的搭建等。以云平台来说,目前大部分的企业都希望自己构建云平台,但现实的情况是大部分企业所构建的云平台安全性很差,而目前没有出现数据泄露的根本原因并不是这些云平台很安全,而是这些数据对于黑客们而言还没有价值。
因此,在我看来当前智能手表产业要想获得大数据的价值,必须转变心态,需要以更加包容、开放的心态来整合数据。只有将当前有限价值的数据进行整合,才能从中挖掘到有效的价值,提升监测算法的精准度。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10