京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据下 电商最喜欢把假货都发给哪类人
网上购物的姑娘都是“女诸葛”,斗智斗勇,36计样样拿手。你不把电商玩疯,电商就把你玩儿疯。话说现在已进入“大数据”时代,电商陷阱越来越科幻,今天照妖镜再次揭露,网上奸商的新玩法。
“看人下刀”,电商玩的更科幻
内幕:你在网上买件大牌化妆品,在订单提交→发货之前,系统会查询分析你在全平台的购物数据(大数据内部共享):购买均价,常购品牌,退货率。如果你同类产品消费倾向绝对大部分在100~200元品牌,系统就判定你没用过大牌真品,在后台将你备注:低风险,发的货有30%几率是高仿货。如果在你购买记录里多次购买品牌,就自动分配真品。
真相
你的消费记录,购买记录,客单价记录,将作为发货参考数据被系统识别,看人下刀更精准。
内幕:很多人有类似经历:买来的产品有小问题又不影响使用怎么办?赶紧退!电商常常解释是因为发货前没有检查货品!这是假话,每一批次的瑕疵产品都有记录,之所以发给你,是因为在你的综合退货率低于电商平均标准。系统会认定你这位客户“好说话”“会将就”,一有垃圾货就优先“照顾”你。
真相
用户的投诉率,退货率都记录在识别系统里,这些数据将作为电商判断你“忍耐力”的参考,退货率低于10%的用户,会收到更多垃圾产品。
货到付款是上帝,先款后货是接盘侠
内幕:先款后货的客户,收到瑕疵品机率是货到付款的3倍,这是大部分电商的潜规则。货到付款的质量问题处理时间是1~2天,先款后货的处理时间是5~6天,电商巧妙利用消费者嫌麻烦心理,将瑕疵产品更多发给先款后货客户,甚至拉长问题处理时间,要不换货,要不售后。退货退钱?先让客服和你“谈谈心”,你就慢慢等着他们反馈给领导吧。
真相
售后时间超过6天是大部分人的“耐心极限”,电商将处理时间设定在耐心临界点,就是为了处理“二手货”,这些尾货全部来源于厂商,供应价低,利润更高用户的投诉率,退货率都记录在识别系统里,这些数据将作为电商判断你“忍耐力”的参考,退货率低于10%的用户,会收到更多垃圾产品。
收货地址,决定给你发什么货
内幕:并不是二三四线城市就一定发假货。新的电商系统能识别收货手机与收货地址所在城市有没有产品专卖店。如果没有,你也没买过同类产品,系统会“放心”分配高仿货给你;如果有专卖店,系统会查询你是否买过同品牌产品。内部消息:使用最新系统售卖高仿货,退货率还不到5%。
真相
不要以为在网上买东西靠运气,事实上电商有精确的数据系统作支撑,该你买到假货,你就绝对买不到真货。
奸商面前别谈隐私
内幕:消费者前脚买完东西,后脚就有骗子电话打上门,购买明细都了解得一清二楚,这是什么原因?问题就出在大数据。订单提交成功后,你的个人数据马上被自动录入系统,上传到电商联盟平台共享,所有电商都能查到你资料,这个过程会经很多人的手,开发公司,数据人员,处处是漏洞。
真相
不要以为有隐私,你的个人资料,消费倾向早已掌握在所有电商手里。通过数据系统就能知道你对假货的反应,能不能识别假货。就像所有银行共享的信用卡黑名单,上了黑名单,所有银行都不同意你的信用卡申请。电商之所有不愿意解决信息泄露问题,是因为他不愿意放弃收集用户数据,没了用户数据做分析,那共享的数据系统就没了参考依据,假货退货率会远高于现在。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13