京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据下的统计学:问题优先而非解法优先
在大数据时代,统计学应当如何发挥它的优势?很多统计学家都在探讨这个问题,包括Steve M. 和Larry W. 也在他们的博客探讨了有关的内容。而笔者的科研方向主要是研究基因组学,也通常被列为统计学和统计学家发挥巨大作用的“大数据”的领域之一,所以对这个问题也思考了一段时间。
一个自然而然的问题就是:“为什么在基因学研究中,统计学家可以取得如此大的成功?”笔者这里想借用Brian C.的一句话来解释:Problem first, not solution backward (问题优先而非解法优先)
在当下,“大数据”这个词的广泛应用得益于数据的获取变得越来越便宜。一个例子就是DNA序列扫描的价格。在其他领域中也是一样,例如人体运动的数据记录,Fitbits,Google books,Twitter上的社交网络数据等等。这些数据的获取或许在十年前有着令人生畏的价格,但现在却绝非难事。
作为一名统计学家,我们希望从这些非常不同的领域中寻找大数据普适的原则:
1.这些数据都无法在一个简单的笔记本电脑上进行分析(不论从几千兆到兆兆字节)。
2.这些数据形式复杂,结构庞杂,如有非结构化的文字信息,有缺失很多数据的json文件,含有质量指标的fastq文件等等等等。
那么为什么在基因研究中,统计学家能取得如此大的成功呢?在笔者看来,很多原因就是干这一行的统计学家愿意花上很长的时间,去处理那些很细节的数据问题。比如,在大数据上运行哪怕是最为简单的统计模型,也要花上数个小时的时间,抑或处理一个得到的基因序列并对它们进行必要的修复也同样是非常耗时耗力。正因为愿意去花时间理解并处理这些很实际的、很细节的问题,统计学家才能得到那些别人无法得到的数据,才使得统计学家在基因学科上取得了今天的成就。
这些事情并不轻松,也并不“高雅”。很多统计学家也不称之为“统计”。Steve在他的博客中提到:“坦诚地说,我对于现在的统计学很少能提出有价值的新观点表示失望。”我想,他的观点是有很多统计学家赞同的。大意是说由于在大数据上面目前没有什么好的理论提出,所以在大数据方面也就没什么值得称为上乘的“新观点”。他们的这种观点就是solution backward (解法优先):我们需要漂亮的理论,然后把它应用到具体问题。
与之不同,我们提出的方式,就是problemforward (问题优先)。正因为当下得到数据变得越来越便宜,我们也就可以分析和学习很多以前无法完成的课题。计算机科学,物理学,生物基因以及其他一些领域在大数据上面一直保持领先正因为他们的研究者在数据分析上并不一定需要一个统计上“完美”的解答。他们更关注有科学意义的问题并愿意花时间,精力去处理那些繁琐的“大数据”来进行分析,从而达到目的。因此,他们能获得别人从未研究过的数据并从中提炼有价值的部分。
在基因学科中就有着很好的例子。DNA晶片的发明,对这个领域产生了革命性的影响。而后统计学家进入这个领域。他们和其他科研人员一起为了同样的科学问题,在实际数据上投入了大量的时间,精力来完成数据处理,或者开发能够处理数据的软件。在笔者看来,想要在大数据时代真正做出成果,首先要专注于那些有意义的科学问题,然后才是提出能解决科学问题的统计方法。这就需要我们重新去思考统计学。那些比如并行计算,数据再加工,数据可复制性,软件开发等等问题,其实和纯统计理论方法同样的重要。
当然,在大数据时代,统计学有着广泛的发挥空间,用我们独特的技能去处理这些新问题中的不确定性,但是这一切的前提都是我们要首先愿意去为了科学目标来处理那些关于数据方面繁琐的工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12