
大数据降温了,来看科技圈十大“上升”和“下降”的趋势名词
科技行业以变化快著称,不过该行业的流行词语变化可能更快。据西雅图初创公司Textio对50万份科技工作招聘启事的研究报告显示,去年最引人注目的一些专业名词,例如大数据,到了今年对应聘者的加分已大不如去年显著。这些陈旧的术语已经被人工智能、实时数据等更热们的趋势取代。
Textio公司CEO基兰·斯奈德(Kieran Snyder)称,extio在研究中追踪了5万个在科技工作招聘启事中常见的短语,然后由此统计出了过去一年来受影响最大的科技短语,分别按照受到正面影响和受到负面影响排列。据悉,在选出的五大“失意者”中,在2014年时均可谓是求职者身上的亮点,由此可见科技行业变化是如此之快。而在五大上升最快流行词语中,只有两个是去年的科技工作中会提到的技能,斯奈德说。
Textio主要以三个方面来衡量其榜单中的科技短语:一是申请包含该科技短语工作的应聘者人数;二是拥有该词语所要求的技能和背景的应聘者在全部应聘者中的百分比;第三是工作招聘发出后多久能够招到相关的人才。之后,Textio将这些数字与一年前的数字相比,再由此排名。以下为Textio公司评选出的今年科技术语五大“赢家”和五大“输家”。
科技圈五大上升及下滑最快流行词语
1、人工智能(Artificial intelligence)
埃隆•马斯克(Elon Musk)与霍金(Stephen Hawking)可能会认为这种现象有点奇怪,但是科技职位申请正朝着人工智能前进。过去6个月,在最佳科技职位招聘中,人工智能术语的使用翻了四倍。
2、实时数据(Real-time data)
大数据虽然表现不佳,但实时数据却表现很好。照预测,和大数据不同,实时数据相关招聘增加预示着企业希望根据最新信息开发产品,而不仅仅是根据众多信息开发。
3、高可用性(High availability)
该领域反映了一个趋势:开发一直处在连接状态、几乎从不停机的软件,已经越来越重要,在技术上这是一大挑战,许多工程师将更为重视。相比一年之前,此类招聘增长了42%。
4、稳健、可伸缩(Robust and scalable)
在过去的一个夏天,这两个词汇的总使用量明显上升,仅是过去2个月就翻了2倍。这两个术语涉及到软件的强大,可以服务众多用户。
5、包容性(Inclusive)
对于求职者来说,办公地点的多元化越来越重要,在科技产业尤其如此,于是招聘者便打出了包容牌。一直以来,企业经常利用“多样化”“差异化”特色吸引求职者,现在这两个术语的意义可能有所改变。可能正是因为这一改变,导致“包容性”术语在过去6个月越来越流行。
6、大数据(Big data)
在科技招聘广告中,大数据是输家。根据Textio的报告,大数据企业可能不再这么称呼自己了。2年前,一切都跟大数据扯上关系,但从5至6个月前开始,大数据术语的使用开始降温。今天,如果在工程职位中使用“大数据”术语,比起不使用要糟糕30%。Textio公司CEO Snyder指出:“现在大数据术语使用已经饱和,你最好谈谈人工智能而不是大数据。”
7、虚拟团队(Virtual team or V-team)
使用企业术语会导致求职者远离,“虚拟团队”术语指的是“远程办公”,使用它会导致求职者数量过低。
8、故障排除(Troubleshooting)
对于众多科技员工而言故障排除是一项关键技能,招聘人员最好管它叫“问题解决”“修理”“诊断”,因为“故障排除”术语的表现比其它术语要糟糕1倍。
9、主题专家(Subject matter expert)
你可能会觉得自己是某领域的专家,但这个术语的另一层意思是指应试者擅长一个领域,对其它领域却所知甚少。科技企业需要的是“全能工程师”,而不是主题专家。
10、无毒工作环境(Drug-free workplace)
一些招聘企业会在广告中使用该术语,结果是广告效果糟糕20倍。6个月前,使用该术语的恶劣影响还只有现在的一半。为什么会这样呢?Textio也不是很确定,可能求职者读到该表述时会认为工作环境苛刻。结果,一些寻找宽松工作环境的求职者掉头离去,他们追求弹性工作时间,希望着装随意。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10