京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据降温了,来看科技圈十大“上升”和“下降”的趋势名词
科技行业以变化快著称,不过该行业的流行词语变化可能更快。据西雅图初创公司Textio对50万份科技工作招聘启事的研究报告显示,去年最引人注目的一些专业名词,例如大数据,到了今年对应聘者的加分已大不如去年显著。这些陈旧的术语已经被人工智能、实时数据等更热们的趋势取代。
Textio公司CEO基兰·斯奈德(Kieran Snyder)称,extio在研究中追踪了5万个在科技工作招聘启事中常见的短语,然后由此统计出了过去一年来受影响最大的科技短语,分别按照受到正面影响和受到负面影响排列。据悉,在选出的五大“失意者”中,在2014年时均可谓是求职者身上的亮点,由此可见科技行业变化是如此之快。而在五大上升最快流行词语中,只有两个是去年的科技工作中会提到的技能,斯奈德说。
Textio主要以三个方面来衡量其榜单中的科技短语:一是申请包含该科技短语工作的应聘者人数;二是拥有该词语所要求的技能和背景的应聘者在全部应聘者中的百分比;第三是工作招聘发出后多久能够招到相关的人才。之后,Textio将这些数字与一年前的数字相比,再由此排名。以下为Textio公司评选出的今年科技术语五大“赢家”和五大“输家”。
科技圈五大上升及下滑最快流行词语
1、人工智能(Artificial intelligence)
埃隆•马斯克(Elon Musk)与霍金(Stephen Hawking)可能会认为这种现象有点奇怪,但是科技职位申请正朝着人工智能前进。过去6个月,在最佳科技职位招聘中,人工智能术语的使用翻了四倍。
2、实时数据(Real-time data)
大数据虽然表现不佳,但实时数据却表现很好。照预测,和大数据不同,实时数据相关招聘增加预示着企业希望根据最新信息开发产品,而不仅仅是根据众多信息开发。
3、高可用性(High availability)
该领域反映了一个趋势:开发一直处在连接状态、几乎从不停机的软件,已经越来越重要,在技术上这是一大挑战,许多工程师将更为重视。相比一年之前,此类招聘增长了42%。
4、稳健、可伸缩(Robust and scalable)
在过去的一个夏天,这两个词汇的总使用量明显上升,仅是过去2个月就翻了2倍。这两个术语涉及到软件的强大,可以服务众多用户。
5、包容性(Inclusive)
对于求职者来说,办公地点的多元化越来越重要,在科技产业尤其如此,于是招聘者便打出了包容牌。一直以来,企业经常利用“多样化”“差异化”特色吸引求职者,现在这两个术语的意义可能有所改变。可能正是因为这一改变,导致“包容性”术语在过去6个月越来越流行。
6、大数据(Big data)
在科技招聘广告中,大数据是输家。根据Textio的报告,大数据企业可能不再这么称呼自己了。2年前,一切都跟大数据扯上关系,但从5至6个月前开始,大数据术语的使用开始降温。今天,如果在工程职位中使用“大数据”术语,比起不使用要糟糕30%。Textio公司CEO Snyder指出:“现在大数据术语使用已经饱和,你最好谈谈人工智能而不是大数据。”
7、虚拟团队(Virtual team or V-team)
使用企业术语会导致求职者远离,“虚拟团队”术语指的是“远程办公”,使用它会导致求职者数量过低。
8、故障排除(Troubleshooting)
对于众多科技员工而言故障排除是一项关键技能,招聘人员最好管它叫“问题解决”“修理”“诊断”,因为“故障排除”术语的表现比其它术语要糟糕1倍。
9、主题专家(Subject matter expert)
你可能会觉得自己是某领域的专家,但这个术语的另一层意思是指应试者擅长一个领域,对其它领域却所知甚少。科技企业需要的是“全能工程师”,而不是主题专家。
10、无毒工作环境(Drug-free workplace)
一些招聘企业会在广告中使用该术语,结果是广告效果糟糕20倍。6个月前,使用该术语的恶劣影响还只有现在的一半。为什么会这样呢?Textio也不是很确定,可能求职者读到该表述时会认为工作环境苛刻。结果,一些寻找宽松工作环境的求职者掉头离去,他们追求弹性工作时间,希望着装随意。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27