
大数据降温了,来看科技圈十大“上升”和“下降”的趋势名词
科技行业以变化快著称,不过该行业的流行词语变化可能更快。据西雅图初创公司Textio对50万份科技工作招聘启事的研究报告显示,去年最引人注目的一些专业名词,例如大数据,到了今年对应聘者的加分已大不如去年显著。这些陈旧的术语已经被人工智能、实时数据等更热们的趋势取代。
Textio公司CEO基兰·斯奈德(Kieran Snyder)称,extio在研究中追踪了5万个在科技工作招聘启事中常见的短语,然后由此统计出了过去一年来受影响最大的科技短语,分别按照受到正面影响和受到负面影响排列。据悉,在选出的五大“失意者”中,在2014年时均可谓是求职者身上的亮点,由此可见科技行业变化是如此之快。而在五大上升最快流行词语中,只有两个是去年的科技工作中会提到的技能,斯奈德说。
Textio主要以三个方面来衡量其榜单中的科技短语:一是申请包含该科技短语工作的应聘者人数;二是拥有该词语所要求的技能和背景的应聘者在全部应聘者中的百分比;第三是工作招聘发出后多久能够招到相关的人才。之后,Textio将这些数字与一年前的数字相比,再由此排名。以下为Textio公司评选出的今年科技术语五大“赢家”和五大“输家”。
科技圈五大上升及下滑最快流行词语
1、人工智能(Artificial intelligence)
埃隆•马斯克(Elon Musk)与霍金(Stephen Hawking)可能会认为这种现象有点奇怪,但是科技职位申请正朝着人工智能前进。过去6个月,在最佳科技职位招聘中,人工智能术语的使用翻了四倍。
2、实时数据(Real-time data)
大数据虽然表现不佳,但实时数据却表现很好。照预测,和大数据不同,实时数据相关招聘增加预示着企业希望根据最新信息开发产品,而不仅仅是根据众多信息开发。
3、高可用性(High availability)
该领域反映了一个趋势:开发一直处在连接状态、几乎从不停机的软件,已经越来越重要,在技术上这是一大挑战,许多工程师将更为重视。相比一年之前,此类招聘增长了42%。
4、稳健、可伸缩(Robust and scalable)
在过去的一个夏天,这两个词汇的总使用量明显上升,仅是过去2个月就翻了2倍。这两个术语涉及到软件的强大,可以服务众多用户。
5、包容性(Inclusive)
对于求职者来说,办公地点的多元化越来越重要,在科技产业尤其如此,于是招聘者便打出了包容牌。一直以来,企业经常利用“多样化”“差异化”特色吸引求职者,现在这两个术语的意义可能有所改变。可能正是因为这一改变,导致“包容性”术语在过去6个月越来越流行。
6、大数据(Big data)
在科技招聘广告中,大数据是输家。根据Textio的报告,大数据企业可能不再这么称呼自己了。2年前,一切都跟大数据扯上关系,但从5至6个月前开始,大数据术语的使用开始降温。今天,如果在工程职位中使用“大数据”术语,比起不使用要糟糕30%。Textio公司CEO Snyder指出:“现在大数据术语使用已经饱和,你最好谈谈人工智能而不是大数据。”
7、虚拟团队(Virtual team or V-team)
使用企业术语会导致求职者远离,“虚拟团队”术语指的是“远程办公”,使用它会导致求职者数量过低。
8、故障排除(Troubleshooting)
对于众多科技员工而言故障排除是一项关键技能,招聘人员最好管它叫“问题解决”“修理”“诊断”,因为“故障排除”术语的表现比其它术语要糟糕1倍。
9、主题专家(Subject matter expert)
你可能会觉得自己是某领域的专家,但这个术语的另一层意思是指应试者擅长一个领域,对其它领域却所知甚少。科技企业需要的是“全能工程师”,而不是主题专家。
10、无毒工作环境(Drug-free workplace)
一些招聘企业会在广告中使用该术语,结果是广告效果糟糕20倍。6个月前,使用该术语的恶劣影响还只有现在的一半。为什么会这样呢?Textio也不是很确定,可能求职者读到该表述时会认为工作环境苛刻。结果,一些寻找宽松工作环境的求职者掉头离去,他们追求弹性工作时间,希望着装随意。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07