
大数据带来大智慧
当前电子政务发展模式正在朝3个方向发展:一是云模式成为技术主流发展趋势;二是业务系统以加强政府各部门协同合作为本质,而非部门分工;三是政府信息资源的开发利用趋于“大数据”应用。从而形成“整合、互联、共享、重构、高效”的电子政务建设和发展总趋势,即:
对已有的应用系统要进行深入整合,实现重点业务领域的跨部门协同;克服条块分割,加快实现互联互通;在整合、互联、协同的基础上,提高信息资源共享的水平和能力;按照政府组织体系的调整,重构一些重大综合应用系统、特别是面向公众的社会管理、公共服务系统,提高政府公共服务能力和社会管理水平;提高电子政务的资金使用效率,进一步促进信息产业发展。
云模式成为技术主流
云计算的本质是通过互联网将大量本该运行在机构内部计算机和服务器上的应用和服务交付由第三方提供,其目标是把所有IT能力都纳入到网络上,云就是网络,网络就是计算机。云计算借助互联网的庞大资源体系,以一种全新的计算模式向用户提供服务。云计算具有4个显著特征:
便捷性:在云计算模式中,所有应用和服务请求的数据资源均存储在云中。用户可以在任意场合、时间通过网络接入云平台,按需求获取所需信息,实现不同终端、设备间的数据与应用共享。多元性:庞大的计算机群具备极高的计算、存储能力,可以使用基于海量数据的数据挖掘技术来搜索网络中的数据库资源,并运用各种方法为用户反馈出尽可能详尽、准确的结果。低廉性:由于云计算模式下大量的计算及存储工作都被放到了网络上,使得个人的用户端简化成浏览器。云计算终端功耗低,成本低廉,终端用户使用简单,维护方便。安全性:分布式系统具有高度容错机制,可以实现严格、有效的控制、配置与管理,具有更好的可靠性、安全性和连接性能。高度集中化的数据管理、严格的权限管理策略可以让用户避免数据丢失、病毒入侵等麻烦。
云计算的本质、特征、功能等决定其成为解决电子政务3大难题的强大武器:最大限度地实现资源共享、最大限度地实现政务业务协同,以及最大限度地实现互联互通。
全流程跨部门业务协同
电子政务业务系统发展将呈现以政府社会管理和公共服务事项全流程为对象,面向政府管理创新开展电子政务建设,将跨部门协同业务相关的各个部门的工作流程整合,在统一网络平台上统筹、集中构建面向该事项全流程的应用系统的特征。相关政府各部门的公务员通过在线接入方式联合协同办公,共同使用无缝集成的全流程跨部门应用系统为公众服务。在这种新型应用架构下,政府为提高服务满意度而对流程采取优化、重组的管理创新,以实现无缝集成的全流程跨部门应用系统更新。
这就有可能使以往阶段发生的、以分分合合为特征、行政成本巨大、社会效果较为激烈的行政管理体制改革,通过动态的、渐变的、持续的、低成本的、更加以人为本和人性化的、比较和谐的政务创新方式加以实现。更重要的是,这种跨部门应用架构将使政府的职能与机构之间的刚性依存结构弱化、柔性化。换言之,这种跨部门应用架构将能够适应行政管理机构的任何状况,即可灵活增加,亦可动态减少。在此应用架构下,部门履行其职能是通过获得无缝集成的全流程跨部门应用系统中的相应权限实现的。当机构改革使部门的职能转变时,只需将其使用权限赋予另一个得到该职能的部门并经过培训即可实现职能和权力的转移。可以看到,这种无缝集成的全流程跨部门应用系统将能够适应行政管理体制改革中机构变化的不确定性,因而能够动态、持续地支撑政府的改革和创新。
大数据带来大智慧
电子政务发展必须关注大数据这个新概念,在这一点上一些国家政府已经走在前列。比如,美国奥巴马政府近日就在白宫网站发布了《大数据研究和发展倡议》,提出“通过收集、处理庞大而复杂的数据信息,从中获得知识和洞见,提升能力,加快科学、工程领域的创新步伐,强化美国国土安全,转变教育和学习模式”。
“智慧来自大数据”,在电子政务的推进中必需掌握大量的知识,并具有在大量的政务数据和信息中挖掘知识的能力。数据挖掘就是从大量的、不完全的、有噪声的、模糊的、随机的实际应用数据中,抽取隐含在其中的、人们事先不知道的、但又是潜在有用的信息和知识的过程。从更广义的角度来说,数据挖掘就是在一些事实或观察数据的集合中寻找模式的决策支持过程。因此,它除了处理传统数据库中的数值型的结构化数据外,还可以对文本、图形、图像、WWW信息资源等半结构、非结构的数据进行挖掘。大数据处理可以进一步提升电子政务价值,使政府决策建立在大量数据分析的基础之上,使政策更加透明,并且可以创造出更大的价值。例如城市管理,利用大数据才能获得突破性改善,诸多产业利用大数据才能发现创新升级的机会点,进而获得先发优势……有了云计算、物联网,但缺乏大数据分析处理的核心技术,智慧政府的“大脑”就不够发达,“智商”就不够高,能力就不够强。
大数据处理并不是简单地把系统放在一个合适的位置,然后自动获取结果。需要掌握从海量数据中获取知识所必需的工具和技能,如数据仓库、数据集成、商业智能、数据可视化工具,业务分析和预测建模等。同时还需要建立正确的工作流程和政策,寻找可以利用数据分析预测市场的人才,构建更有效的产品和服务以满足需求快速变化的市场。我们需要“拨云散物”集合“数据”,更要确立今后“腾云驾物”用“数据”的目标,把握政务事务发展的核心能力
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07