
大数据行业:人才欠缺,高薪易得
随着大数据的流行,新的工作机会将留给那些有准备的人。现在,人们可以很方便地通过网络学习最新的科技知识,没有时间、金钱和地域限制。即使在巴基斯坦的一个小村庄里,年轻人也可以通过网络学习高级数据训练课程。
比如,像巴基斯坦这样的欠发达国家,大学学费往往很高,普通人上不起。不过,巴基斯坦的年轻人现在就完全可以通过网络学到西方国家那些先进的技术知识。类似哈佛大学和麻省理工这样的顶尖学府都开放了大量的免费优质课程,年轻人可以通过这些课程学习如何成为一名数据科学家。
数据分析师大量欠缺,要抓住机会
大数据的普及带来了很多新的工作岗位。现在优秀的数据科学家严重缺乏,就算西方国家的大学在数据分析专业里招了很多学生,这些学生的数量也远远无法满足如今市场的需求。知名咨询公司麦肯锡此前发布的一项报告预测,市场上的数据分析师将会出现严重的缺口。到2018年,美国将会缺少150万懂得如何利用大数据来帮助公司做出有效决定的专业人员,在精通数据分析的人才方面,美国也将会面临14万到19万人的缺口。
像菲律宾和巴基斯坦这样的国家,政府可能也想抓住大数据行业的这一发展机会。这些政府认为,与其把年轻人送到中东国家当一个只能拿到当地最低工资的建筑工人,或者让年轻人去西方国家当地位低下的保姆,不如让他们学习如何进行大数据的分析处理,成为一名具有国际化视野的数据分析人才。
你只需要能上网就行
好消息是,现在发展中国家的年轻人不需要远渡重洋去国外留学才能学到大数据的专业知识了。只要你能上网,你就能学习。
像Coursera、Udacity这样的网站都提供大量的课程,这些课程会像你在学校里学习一样,每堂课会布置作业,你需要按时交作业,课程结束后你还能得到结课证书。在Coursera上你可以学习世界顶尖大学的课程,比如约翰霍普金斯大学的课程。Udacity则提供很多新的学习方式,比如nonodegree,在这里你花一两千美元就能成为一个专业的网站开发师或者数据分析师。这些网站已经吸引了大量的用户,很多人在这里学习新知识。
Coursera商业发展部负责人Julia Stiglitz最近撰写的一篇文章指出,数据分析是目前Coursera网站上最流行的一门课程。美国的顶尖大学都愿意接受这种新的授课方式,这些大学给像Coursera这样的网络学习平台提供了大量优质的公开课视频。所以,你还在担心你通过网络学不到最尖端的数据分析知识吗?
你学到了知识,然后呢?
不过,你可不要认为,只要学习到数据分析的必备知识,你就能成为一个好的数据科学家了。有机构对一些顶尖的数据科学家进行过调查,这些科学家认为,要想成为一个优秀的数据分析家,你还必须做到以下几点。
第一, 训练自己的多模式思维
现实生活中一件事往往有多种解决方案,最佳解决方案会是不同的想法和解决思路碰撞的结晶,而这些想法和解决思路的来源往往也不尽相同。一个企业会从各种渠道收集信息,你需要学习在每个渠道中提取有用的数据信息进行分析,再把这些分析结合到一起去,从而找出最佳解决方案。
第二, 把它当成职责而不仅仅是一份工作
你未来的同事会希望你把这份数据研究的工作当成是一种职责,他们想听到你对于数据如何改变生活的看法。你应该用具体的例子来支持你的看法,如果你有相关工作经验更好。
第三, 扩展交际圈
在商业上,扩展人脉一直很重要,所以下班后多多出去看看吧。如果你想成为数据领域内的专家,你应该多接触这个领域内的人。多去参加那些关于大数据的论坛、讲座等活动,多关注一些关于大数据的社交媒体账号。如果你的熟人在一家优秀的大数据公司工作,当他们有职位空缺时,他们会想到你。这便是扩展交际圈带来的好处之一。
第四, 多尝试使用新工具
经常下载新的软件包试用。在GitHub和一些类似的技术论坛上,经常会有人上传自己编写的程序供大家免费试用。你可以帮忙修改这些程序中的bug,通过你自己的不断修改与不断完善,你觉得bug改得差不多了,就可以把完善后的程序放到GitHub。如果程序还不错,或许就会有人注意到你。通过这种方式,你可以显示出自己是个具有创新精神的数据分析员,能够独立解决问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23