
大数据时代的人才发展策略
从2012年始,大数据一词越来越多地被提及,人们用它来描述和定义信息爆炸时代产生的海量数据,并命名与之相关的技术发展与创新。哈佛大学社会学教授加里·金说:“这是一场革命,庞大的数据资源使得各个领域开始了量化进程,无论学术界、商界还是政府,所有领域都将开始这种进程。”人才发展同样如此,人才发展的量化研究及管理有利于推进人才发展的科学化、规范化和制度化进程。
将量化研究结果分析作为引才的“罗盘”,提高引才精度
基于量化研究结论的缜密思考,可以帮助人才工作决策及管理者找到一种办法,来同时促进社会组织和人才双方利益的增加。如,在我国东南部沿海地区尝试的“人才团队项目绩效评价”,就是人才发展量化管理的一个有效方法。通过包含数十项指标、体现人才项目效益的“人才项目绩效评价指标体系和标准体系”的评价与相应数学模型的测算,能得到各类人才团队项目绩效的量化分值,及其优劣的量化分析结论。人才工作决策及管理者和用人单位据此可以清晰地了解各类人才团队创新创业的成效和不足,人才团队也从中认识到自身的优势和缺失,进而制定绩效改进的方案。
严密的分析可以阻止人才工作决策及管理者采取一些武断和有害的行为,对人才创新创业产生帮助,使人才使用单位受益。仍以“人才团队项目绩效评价”为例:不少地区将预期绩效评价结果作为引才的“罗盘”。人才项目引进从产业需求出发,在项目申报之时就开展“预期绩效评价”。项目的评审认定按照绩效评价方法加以考量,并将项目“预期绩效”作为今后发展实绩的比对标杆。这样能够有侧重地推行“节点引才”,尽量避免“捡到篮里就是菜”,阻止“凭领导的好恶点人才”现象的发生。
将数量化思考作为人才管理“利器”,避免盲目资助
严格的数量化思考不仅有可能显示出一项对人才发展有负面影响的决策是质量低劣的,而且有可能揭示出一项不清醒的、依据不足的决策是错误的。以引进“高端人才”为例:有些不具备引进高端人才条件的地区,没有对本地区的人才和社会发展现状进行定量分析,盲目追求“海归”人才的引进。由于不能很好提供创新创业的各种平台及政策环境,致使“海归”人才无法展现和发挥其才智。“不清醒的、依据不足的错误决策”使该地区付出了昂贵的“学费”。
数量化思考可以使人们认识到一项特定的决策尽管符合人才发展的大方向,但是代价高昂。在没有进行分析的情况下,人们往往是低估而不是高估对人才管理所可能产生的成本。一些地区把绩效评价成绩单作为项目管理的“利器”,明确要求落户满两年的人才项目必须开展绩效评价。根据各项目绩效评价成绩单实行分类管理。评价优秀的项目给予重点鼓励与培育推进,评价不达标的项目要会同相关部门,与领军人才面对面沟通、一对一把脉问诊,深入查找问题症结所在,共同商议提出补长短板、解决制约瓶颈的“绩效改进计划”。在项目日常管理中,将项目绩效与兑现后续资助政策“绑定”,明确人才项目达到绩效评价相应条件、经验收合格后,方可享受后续相关资助政策,避免了“盲目资助”所产生的高昂成本。
用强烈的数据意识推进人才发展科学化
当前,不少部门的负责人数据意识淡薄,缺乏用数据来说话的素养。在日常管理上,也缺乏以数据为基础的精确管理,有时甚至是刻意回避数据。我国一些部门和机构对数据保存不够重视,对存储数据的利用率不高,有的拥有大量人才经济数据却既不公开,也不愿与其他部门共享,给人才量化研究带来困难。如果一位人事人才工作者对本部门负责地区的人才发展态势心中无数,言中无量,何以履职,何以作为?人才发展管理将日益基于数据和分析来实施,而并非基于经验和直觉,应该成为大数据时代人事人才工作者的行为意识;人才发展的量化研究,也应该成为大数据时代人事人才工作者的基本功和工作技能。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23