
消费大数据公司信柏科技树立“大数据-重分析-强应用”理念发布新一代大数据业务平台,以大数据为基础、软硬件结合的方案来辅助企业进行经营决策与精准营销。该大数据业务平台定位于“人群 、“内容”、“行业 ”与“地域”精准分析与挖掘,覆盖到企业营销中较为关注的用户特征画像、精准人群标定、定向数据采集内容监听 、采集内容的关联分析、行业报告与市场动态、竞品分析、新店开张选址报告、指定地区常驻人群特征分析等业务,致力于成为“消费类企业的大数据营销智囊“。据了解,信柏科技不同于其他服务商,信柏的大数据根基深厚,乃国内最专业的消费大数据公司,经过多年的发展,已拥有国内零售消费领域最大的第三方数据库、一流的大数据分析及模型建构能力,掌握分析之”源“、管理之”本“。
大数据营销:基于大数据技术的创新营销方法
传统调研分析报告往往掺杂设计者和受访者的主观偏差,这些偏差使得企业难求精准真实的结果。同时,数据与数据管理应用分离的情况难以挖掘数据价值的现象亦普遍存在于企业中。由此,大数据及大数据营销理念自诞生之初就被寄予厚望,企业都希望通过大数据营销开拓新市场。然而,大数据营销如何落地?大数据营销是一种基于大数据技术的创新营销方法。信柏科技CEO柏林森认为,大数据营销的核心在于掌握消费者的行为轨迹和兴趣偏好,构建消费者画像,并通过大数据技术手段不断补充完善,描绘越仔细消费者需求定位就越精准。对于专业做消费大数据的信柏科技来说,不管是为企业分析消费品牌/产品在消费客群中的竞争,还是挖掘全网潜在消费者及其需求并做精准营销,抑或是基于海量消费数据和地址数据分析辅助企业选址规划等,信柏皆可基于用户真实行为数据和数据管理分析模型,得出专业精准到位的数据产品报告及行销建议,为企业提供准确客观的数据产品分析,支持企业进行经营决策和个性化精准营销。
面向人群 、内容、行业与地域分析的大数据营销
信柏全新发布的大数据业务平台一期着重解决消费类企业最为关注的消费者分析、消费者精准营销、竞争分析、特别内容监测、选址分析等。
对于市场竞品分析、行业分析,企业提供指定的竞品列表,信柏即可通过数据发掘产出分析报告。如“客户商品与竞争商品在各大电商的关注度对比、商品最受关注的属性对比,同价位的客户商品与竞争商品的销量对比”。
针对消费者的分析和营销,信柏可以根据企业描述需要寻找的人群,例如“近期有手机购买需求的人群”。信柏通过“近1月在淘宝内搜索过手机及相关关键词”或“近1月浏览电商手机页面超过5次”等挖掘条件完成精准人群的筛选。更进一步,配合上述“人群定向”服务,信柏可帮助企业完成对“精准人群”进行营销信息推送,例如EDM、短信、展示类广告、在线呼叫等。
对于选址分析方面,信柏可以对地域人群特征等进行分析(人口属性、偏好特征、需求特征等)辅助店铺选址及铺货。企业只需描述自身行业特性及消费群体特性,信柏即可通过海量的移动端数据以及真实地址数据等进行关联分析,并给出基于线下地理位置的选址报告。
另外,信柏还提供定向数据采集、个性化监听等关于面向内容采集与分析方面的业务。企业提出采集数据的条件,信柏大数据业务中心可按需产出相应分析报告。例如,企业可以提出采集“某款网游活跃玩家的人物等级、角色、战绩等”、“近1月在京东网站内指定的10款手机页面浏览量对比分析”等;企业给出需要监听的网址,信柏大数据业务中心可按需分析产生报告,绘制监听目标的浏览量曲线、指定区域内容变化、流量来源对比,并结合相应行业的全网数据给出页面的质量评分或各区块修改建议。例如,企业可提出监听“某市场活动页”、“某商品单品页”、“某垂直论坛”等。
索尼率先与信柏合作构建“索尼大数据平台”
记者收到消息,信柏的大数据营销分析业务已得到知名3C品牌索尼的青睐。索尼已率先与信柏展开合作构建“索尼大数据平台”。据了解,索尼大数据平台是基于信柏的海量第三方数据,以索尼品牌数据为核心,信柏与索尼就市场分析报告与用户营销平台两大板块达成合作,主要就四大电商关注度、品牌机型对比、流量来源分析以及用户群类占比、会员标签管理和店铺流量分析等方面进行了数据分析与报表产出。
信柏科技CEO柏林森谈到,信柏会不断推出更多实用的大数据营销分析业务,希望信柏的消费大数据技术和落地应用能帮助更多企业,尤其是消费类企业找到行之有效的大数据营销方法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10