
大数据时代需注重数据管控
新世纪以来,信息和数据呈爆炸性增长态势,世界进入大数据时代。按信息单位计算,现在全世界每天发送的数据量达40亿个或更多,我们的数字世界已拥有超过1.8万亿吉比特的数据,并且仍将以每年40%以上的速度增长。大数据正在通过各种方式对人类经济社会发展的各个领域产生重要影响。
随着数据量的高速增长,数据的内在价值日益受到关注。数据量激增已经给各行各业带来深刻影响,以数据为研究基础的社会科学也不例外。目前,虽然文献的知识本质并没有随时代的变化而变化,但其符号、载体和记录复制方式正在发生翻天覆地变化;电子形式或网络空间中的文献正在向综合化方向发展,数字化、多媒体、可视化等正在成为文献记录、保存和传播的发展方向。面对这种形势,社会科学的研究方法、研究内容和学科疆界也在发生变化。在这一进程中, 我们面临的一个突出问题就是数据和信息的质量及其管理。虽然大数据无处不在,但社会科学研究者能够利用的毕竟只是其中极小一部分。一方面是数据和信息资源的数量无限增长,另一方面是人类对这些海量数据和信息资源的认知与利用能力还远远跟不上;一方面是有用资源具有明显稀缺性,另一方面又存在大量低质量的冗余信息。在海量数据和信息面前,如果没有数据管控,没有数据和知识挖掘、发现、组织、导航、表达的科学化管理过程,科研人员就有可能迷失在数据和信息的汪洋大海中。
当前,数据管控已成为学术研究尤其是社会科学研究中一个极为重要的问题。只有通过数据管控,加强对数据特别是分布式数据的观察和管理,充分利用网格计算等信息技术来搜集、加工、整合、共享及传播相关数据,才能达到数据和知识利用的精准化、科学化和最大化。比如,知识发现软件工具可以帮助社会科学研究者从结构化数据或非结构化的复杂数据中提取有用和便于理解的知识。文献信息服务的实践表明,包括图书馆在内的文献信息服务机构,由于掌握着大量科研数据,正是对科研数据实施动态管控的最佳信息组织。通过数据管控,可以为科研人员提供超越时空的图书馆泛化服务,即移动性的数据、信息和知识获取场所,零时差的获取时间,多样化的获取工具。
在大数据时代,鉴于离散型的文献和文献检索方法已无法满足社会科学研究者对专题性、指向性强的学术文献的需求,文献信息服务机构应推进集成式检索,优化数据挖掘技术、知识发现技术,提供定制化、个性化、知识化服务。尤其是建立面向科技创新基地、科研院所、课题组乃至个人的学科化服务机制,进一步拓宽文献信息服务范围,提升服务层次,加快学术交流和信息、知识的传播速度,提高文献信息资源的利用率和共享率,使文献信息服务机构的服务更直接、更有针对性,更好地服务于创新研究。
目前,我们对大数据的探索只是刚刚开始,科学认识和把握大数据与经济社会发展的内在关系、与信息和知识管理的内在关系,可能是包括文献信息工作者在内的整个学术界在今后相当长一段时间的重要课题。因此,文献信息工作者不能停留在低层次、低水平重复的传统内容生产模式上,而应适应大数据时代的新形势,推进知识生产过程的有序化、结构化。
人类正处在一个强调知识和信息的时代。培根曾提出“知识就是力量”,后来学术界又提出“信息就是力量”。现在,又有学者提出“共享知识就是力量”,强调把信息管理、信息共享提升到知识管理和知识共享的阶段。利用互联网来构建知识社会,在网络环境下实现知识交流与共享,这体现了时代的进步,有着丰富的时代内涵。在大数据时代,我们应做好数据管控,把“共享知识就是力量”的理念贯彻到知识服务实践中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18