京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代需注重数据管控
新世纪以来,信息和数据呈爆炸性增长态势,世界进入大数据时代。按信息单位计算,现在全世界每天发送的数据量达40亿个或更多,我们的数字世界已拥有超过1.8万亿吉比特的数据,并且仍将以每年40%以上的速度增长。大数据正在通过各种方式对人类经济社会发展的各个领域产生重要影响。
随着数据量的高速增长,数据的内在价值日益受到关注。数据量激增已经给各行各业带来深刻影响,以数据为研究基础的社会科学也不例外。目前,虽然文献的知识本质并没有随时代的变化而变化,但其符号、载体和记录复制方式正在发生翻天覆地变化;电子形式或网络空间中的文献正在向综合化方向发展,数字化、多媒体、可视化等正在成为文献记录、保存和传播的发展方向。面对这种形势,社会科学的研究方法、研究内容和学科疆界也在发生变化。在这一进程中, 我们面临的一个突出问题就是数据和信息的质量及其管理。虽然大数据无处不在,但社会科学研究者能够利用的毕竟只是其中极小一部分。一方面是数据和信息资源的数量无限增长,另一方面是人类对这些海量数据和信息资源的认知与利用能力还远远跟不上;一方面是有用资源具有明显稀缺性,另一方面又存在大量低质量的冗余信息。在海量数据和信息面前,如果没有数据管控,没有数据和知识挖掘、发现、组织、导航、表达的科学化管理过程,科研人员就有可能迷失在数据和信息的汪洋大海中。
当前,数据管控已成为学术研究尤其是社会科学研究中一个极为重要的问题。只有通过数据管控,加强对数据特别是分布式数据的观察和管理,充分利用网格计算等信息技术来搜集、加工、整合、共享及传播相关数据,才能达到数据和知识利用的精准化、科学化和最大化。比如,知识发现软件工具可以帮助社会科学研究者从结构化数据或非结构化的复杂数据中提取有用和便于理解的知识。文献信息服务的实践表明,包括图书馆在内的文献信息服务机构,由于掌握着大量科研数据,正是对科研数据实施动态管控的最佳信息组织。通过数据管控,可以为科研人员提供超越时空的图书馆泛化服务,即移动性的数据、信息和知识获取场所,零时差的获取时间,多样化的获取工具。
在大数据时代,鉴于离散型的文献和文献检索方法已无法满足社会科学研究者对专题性、指向性强的学术文献的需求,文献信息服务机构应推进集成式检索,优化数据挖掘技术、知识发现技术,提供定制化、个性化、知识化服务。尤其是建立面向科技创新基地、科研院所、课题组乃至个人的学科化服务机制,进一步拓宽文献信息服务范围,提升服务层次,加快学术交流和信息、知识的传播速度,提高文献信息资源的利用率和共享率,使文献信息服务机构的服务更直接、更有针对性,更好地服务于创新研究。
目前,我们对大数据的探索只是刚刚开始,科学认识和把握大数据与经济社会发展的内在关系、与信息和知识管理的内在关系,可能是包括文献信息工作者在内的整个学术界在今后相当长一段时间的重要课题。因此,文献信息工作者不能停留在低层次、低水平重复的传统内容生产模式上,而应适应大数据时代的新形势,推进知识生产过程的有序化、结构化。
人类正处在一个强调知识和信息的时代。培根曾提出“知识就是力量”,后来学术界又提出“信息就是力量”。现在,又有学者提出“共享知识就是力量”,强调把信息管理、信息共享提升到知识管理和知识共享的阶段。利用互联网来构建知识社会,在网络环境下实现知识交流与共享,这体现了时代的进步,有着丰富的时代内涵。在大数据时代,我们应做好数据管控,把“共享知识就是力量”的理念贯彻到知识服务实践中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07