
“仙桃”集结 中国大数据产业生态谷正崛起
10月9日,市政府与英国ARM公司签署合作谅解备忘录,将在仙桃数据谷建立ARM产业生态园,推动全市集成电路设计企业的快速发展。
据了解,英国ARM公司在移动芯片领域已占领了90%左右的全球市场,成为苹果公司的供应商之一。
这家公司在仙桃数据谷建的ARM生态产业园在5年内将聚集起5000名IC设计人才。
“仙桃数据谷正在集合起一批大数据产业,并成为重庆最大的大数据产业群。”渝北区委书记沐华平说。
A “国际范”的“3+6”产业体系
“仙桃数据谷的产业是国际性的。”重庆仙桃数据谷投资管理有限公司董事长汪小平说,具体说来,就是在按照“大数据、小传感、海储存、云应用”的产业方向,布局建设“3+6”的产业体系。
汪小平解释说,这其中的“3”,就是以传感产业园、存储产业园、数据挖掘分析三大基础产业为支撑,“6”即打造金融大数据、健康大数据、教育大数据、设计大数据、跨境电商、城市管理大数据6个行业大数据应用产业园,最终形成龙头企业、核心企业集聚的全产业大数据生态圈。
汪小平说,每个产业板块都将采用“龙头企业、公共平台、4.0版孵化、投资机构、创新企业”五位一体的运营模式,同时结合云端办公、安全防卫等智能化办公体系以及各类服务与展示平台等,为“3+6”产业体系提供保障。
“国际范”是仙桃数据谷产业的特色。据介绍,在产业布局和招商中,数据谷面向国际大数据相关产业及国际大数据龙头企业进行招商,集聚全球资源,运用全球市场。
B 六大创新支撑平台保障产业群
在仙桃数据谷占地1000多平方米的智能样机创新中心里,3D打印机、贴片机等器械已经陆续安装到位,10月底正式投入使用。
这是由渝北区携手宏碁、纬创、中兴投资2000万元联合打造的样机中心,包含打样、3D打印、贴片、验证、测速等功能。
所谓打样,就是将智能终端的设计图进行3D打印,制造出样机进行试用。据宏碁股份有限公司自建云(重庆)应用中心总处长王明山介绍,以前重庆企业开发设计出一个智能终端,一般要跑到深圳或江苏昆山去打样机,往返至少需要两周;若是需要修改调整,甚至会耗费一个月。他说:“今后在仙桃数据谷打样,仅需2—3天,将大大降低时间成本。”
“这是数据谷打造的一个创新支撑平台。”沐华平说,在聚合大数据产业群中,渝北区决定,将在仙桃数据谷打造六大创新支撑平台,以助推数据谷及全区的大数据产业发展。
这六大创新支撑平台是——
消费者行为大数据分析库。由宏碁集团、法国EFG公司打造,将为创新产品设计提供消费者行为习惯、偏好及数据支撑。
ARM创新加速器。由ARM和中科创达合作组建,为初创公司及创新项目提供技术支持、培训指导、风险投资等服务。
产品外观设计平台。由惠普打造“渲染云”平台,为工业设计、智能硬件设计、服装设计等提供云资源及技术平台支撑。
智能样机生产平台。渝北与宏碁、纬创、中兴软创合作打造,拟建立国家级实验室,提供智能硬件设计打样、3D打印等服务。
智能语音识别系统平台。由科大讯飞建设,基于大数据和人工智能技术,形成高效易用的“教育云”和“语音云”平台。
样机营销平台。由谷歌、亿赞普建设,构建全球样机的“商业雷达”和“营销网络”。
“这六大创新支撑平台既为大数据产业集群服务和做好保障,其本身也是一大产业群。”沐华平说。
C 建全球人才培养产业群
在仙桃国际大数据谷的产业集群中,还有一项人才培养产业。
今年7月,渝北区携手美国西亚斯集团、重庆邮电大学共同打造大数据学院,重点在职业培训及研究生培养,开展大数据产业相关的短期或中期职业资格培训,设置大数据及其关联产业的技术、管理、金融三类课程方向,帮助培养掌握前沿大数据技术、拥有实践经验的人才。
前不久,渝北区政府又与微软(中国)有限公司、微软亚太科技有限公司签署战略合作备忘录,三方将在大数据平台、大数据学院、创新孵化加速器平台、大数据体验中心领域方面展开全面合作。
“按照战略合作协议,微软(重庆)大数据技术及产业创新基地、微软IT学院两大项目将落户仙桃数据谷。”汪小平说,特别是微软IT学院的落户,将为仙桃数据谷的人才培养产业注入活力。
汪小平说,微软已经决定,将把“微软IT学院”引入到仙桃数据谷的大数据学院,并将采取“境内+境外”、“线上+线下”、“教学+实训”及国际协同招生的模式,对大数据学院进行课程设置,让大数据学院可以到国外去招生、国内的学员通过线上教育听国外的课程等,还可以为跨国公司定制培养专业人才。
与此同时,由微软提供技术服务的国内数据中心在线服务平台——“世纪互联”将为大数据学院提供不低于10万名符合要求的教育工作者,微软还将派遣10名IT人才,为大数据学院提供智力支持。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18