京公网安备 11010802034615号
经营许可证编号:京B2-20210330
百度西交大大数据竞赛冠军:大数据发展才刚刚起步
10月16日,百度与西安交通大学联合主办的大数据竞赛颁奖典礼在西交大隆重举行。本次赛事吸引了全国数十所一流大学的近900位选手组队参赛,经过5个月的激烈比拼,冠军团队最终凭借其精准清晰的程序结构以及优质完整的算法,经过评审成功摘得桂冠。亚、季军则由六支不同高校的参赛团队选手摘得。竞赛评委、百度知识图谱产品数据建设负责人牛正雨点评称“他们的大数据分析模型可媲美百度。”
西安交通大学校长王树国(左一)、百度副总裁朱光(右一)为冠军团队代表颁奖
颁奖仪式结束后,记者采访了冠军竞赛团队,选手们对此次赛事给予了高度肯定:“非常感谢百度能够组织这样一次成功的、有意义的高水平比赛。在整个比赛过程中,主办方提供了交流平台,方便选手之间进行相互的交流。同时,其它参赛的选手们大多是相关领域专家们的学生,能与这些高手队伍过招,我们也觉得非常荣幸。”据了解,冠军竞赛团队曾参加过2014年百度知识图谱大数据竞赛,在整个竞赛提供的两个子任务中获得两个第一名,一个第二名的好成绩。
大数据发展刚起步 路虽长但定会影响人们的生活
大数据是目前十分热门的几个研究领域之一,该领域每年都有着大量的技术创新。作为一个交叉学科,大数据不仅需要IT技术的支撑,更需要深厚的领域知识辅助分析。他们表示:“投身于大数据的研究是一个非常好的机会,希望能通过这个领域去接触更广更深更有意义的知识。这些大数据时代的科技产品仍在起步阶段,通过对大数据的进一步开发以及利用,未来的产品会更多样、更新颖同时也更具创造力。“大数据时代才刚刚到来,也还有很长的路要走,但我们相信大数据一定会在未来影响人们的生活。”
学术界牵手企业界 让数据得到运用人才获得发展
缺少数据常常是困扰学术界日常研究工作的一个重大难题,百度作为中国的三大互联网巨头之一将长期无偿地开放数据,这也受到了学术界的欢迎。冠军竞赛团队的代表称,非常希望同企业进行合作,共同开发和利用这些海量数据。由于这些数据是在真实的业务系统中产生的数据,够帮助学术界更好地发现一些实际生活的需求,让学术界与工业界实现工作更好地联系,真正的做到产学研相结合。
冠军团队代表获得本届大数据竞赛最高奖金
他们表示,很期待中国的各大互联网巨头们都能在将来开放出这样的一个平台。一方面可以提高科研任务在学生心中的兴趣。另一方面,也能够让来自不同院校间的学生有机会在一起交流。“通过这样一个大平台,企业也可以更好地了解学生,挖掘有潜力的学生作为企业的后备力量,同时对于我们学生来说,也可以更好地了解企业,深入企业的日常工作。”
百度将面向参赛的顶尖技术人才们提供了企业绿色直通车,以此实现他们到百度交流、实习、工作的愿望。冠军选手们也对记者说,十分希望将来能够有机会进入百度这样的互联网公司,同业界顶尖的大牛们一起交流、沟通,提升自我,增加自己的技术积累,为中国的互联网行业贡献自己的绵薄之力。百度校园品牌部负责人对此发表感言称“形式不拘一格为只为广纳天下大数据人才。”
获奖团队选手与百度大数据竞赛负责人合影
天量数据向选手发起挑战,冠军们称“很受锻炼”
为了让选手们真正体验到“实战”的感觉,百度为此次竞赛提供了同行业竞赛中最大的数据集。面对 十亿量级的原始数据,冠军团队选手称“相较以往的比赛,此次赛事的数据量扩大了许多,刷新了其参加数据挖掘比赛的数据量处理纪录,同时也对于模型算法的效率提出了更高的要求。实体关系抽取是学术界的一个热门研究话题,在整个关系抽取过程中,需要处理的关系非常多(例如:人物亲属的关系有数十种之多),而且这些关系既复杂,又容易混淆。”
他们还认为,数据预处理是数据挖掘的基础内容,大数据虽然数据足够多,但能够挖掘到宝藏的数据可能并不那么多。“如何从这海量数据之中进行清洗是我们团队在整个竞赛伊始就在讨论的问题”。冠军代表称,正是因为句子哈希化,去重,筛选关键词等预处理做法的应用,才为后续算法的执行效率,模型的训练速度等提供了保障。同时赞许到:“同其他竞赛比起来,百度的竞赛更接地气,不仅与目前学术界最新技术的研究方向相关,也契合了用户在日常使用过程的实际需求,是一个非常好的竞赛内容。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06