
百度西交大大数据竞赛冠军:大数据发展才刚刚起步
10月16日,百度与西安交通大学联合主办的大数据竞赛颁奖典礼在西交大隆重举行。本次赛事吸引了全国数十所一流大学的近900位选手组队参赛,经过5个月的激烈比拼,冠军团队最终凭借其精准清晰的程序结构以及优质完整的算法,经过评审成功摘得桂冠。亚、季军则由六支不同高校的参赛团队选手摘得。竞赛评委、百度知识图谱产品数据建设负责人牛正雨点评称“他们的大数据分析模型可媲美百度。”
西安交通大学校长王树国(左一)、百度副总裁朱光(右一)为冠军团队代表颁奖
颁奖仪式结束后,记者采访了冠军竞赛团队,选手们对此次赛事给予了高度肯定:“非常感谢百度能够组织这样一次成功的、有意义的高水平比赛。在整个比赛过程中,主办方提供了交流平台,方便选手之间进行相互的交流。同时,其它参赛的选手们大多是相关领域专家们的学生,能与这些高手队伍过招,我们也觉得非常荣幸。”据了解,冠军竞赛团队曾参加过2014年百度知识图谱大数据竞赛,在整个竞赛提供的两个子任务中获得两个第一名,一个第二名的好成绩。
大数据发展刚起步 路虽长但定会影响人们的生活
大数据是目前十分热门的几个研究领域之一,该领域每年都有着大量的技术创新。作为一个交叉学科,大数据不仅需要IT技术的支撑,更需要深厚的领域知识辅助分析。他们表示:“投身于大数据的研究是一个非常好的机会,希望能通过这个领域去接触更广更深更有意义的知识。这些大数据时代的科技产品仍在起步阶段,通过对大数据的进一步开发以及利用,未来的产品会更多样、更新颖同时也更具创造力。“大数据时代才刚刚到来,也还有很长的路要走,但我们相信大数据一定会在未来影响人们的生活。”
学术界牵手企业界 让数据得到运用人才获得发展
缺少数据常常是困扰学术界日常研究工作的一个重大难题,百度作为中国的三大互联网巨头之一将长期无偿地开放数据,这也受到了学术界的欢迎。冠军竞赛团队的代表称,非常希望同企业进行合作,共同开发和利用这些海量数据。由于这些数据是在真实的业务系统中产生的数据,够帮助学术界更好地发现一些实际生活的需求,让学术界与工业界实现工作更好地联系,真正的做到产学研相结合。
冠军团队代表获得本届大数据竞赛最高奖金
他们表示,很期待中国的各大互联网巨头们都能在将来开放出这样的一个平台。一方面可以提高科研任务在学生心中的兴趣。另一方面,也能够让来自不同院校间的学生有机会在一起交流。“通过这样一个大平台,企业也可以更好地了解学生,挖掘有潜力的学生作为企业的后备力量,同时对于我们学生来说,也可以更好地了解企业,深入企业的日常工作。”
百度将面向参赛的顶尖技术人才们提供了企业绿色直通车,以此实现他们到百度交流、实习、工作的愿望。冠军选手们也对记者说,十分希望将来能够有机会进入百度这样的互联网公司,同业界顶尖的大牛们一起交流、沟通,提升自我,增加自己的技术积累,为中国的互联网行业贡献自己的绵薄之力。百度校园品牌部负责人对此发表感言称“形式不拘一格为只为广纳天下大数据人才。”
获奖团队选手与百度大数据竞赛负责人合影
天量数据向选手发起挑战,冠军们称“很受锻炼”
为了让选手们真正体验到“实战”的感觉,百度为此次竞赛提供了同行业竞赛中最大的数据集。面对 十亿量级的原始数据,冠军团队选手称“相较以往的比赛,此次赛事的数据量扩大了许多,刷新了其参加数据挖掘比赛的数据量处理纪录,同时也对于模型算法的效率提出了更高的要求。实体关系抽取是学术界的一个热门研究话题,在整个关系抽取过程中,需要处理的关系非常多(例如:人物亲属的关系有数十种之多),而且这些关系既复杂,又容易混淆。”
他们还认为,数据预处理是数据挖掘的基础内容,大数据虽然数据足够多,但能够挖掘到宝藏的数据可能并不那么多。“如何从这海量数据之中进行清洗是我们团队在整个竞赛伊始就在讨论的问题”。冠军代表称,正是因为句子哈希化,去重,筛选关键词等预处理做法的应用,才为后续算法的执行效率,模型的训练速度等提供了保障。同时赞许到:“同其他竞赛比起来,百度的竞赛更接地气,不仅与目前学术界最新技术的研究方向相关,也契合了用户在日常使用过程的实际需求,是一个非常好的竞赛内容。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18