
针对大数据趋势 安防市场如何应对
据国外媒体报道,云计算管理公司adaptivecomputing最近发表了它对2014年未来计算和大数据分析的主要预测。这些预测包含一些新兴趋势,如云计算的冲突、高性能计算和大数据等。这些趋势将加快企业从数据中提取见解的方式。
1.企业将合并计算资源以便提供更好的大数据解决方案
据adaptivecomputing的调查,91%的机构认为大数据、高性能计算或者云计算将出现一些合并。adaptivecomputing预测称,随着云计算、高性能计算和大数据之间的冲突日益激烈,投资能够编排和优化数据中心资源的软件的机构将获得竞争优势。这种软件将通过同时编排在多个计算平台上的计算工作提高利用率。
2.更多机构将把高性能计算作为大数据解决方案
据adaptivecomputing的调查,44%的机构使用高性能计算作为大数据解决方案。随着高性能计算硬件成本继续下降,高性能计算将成为包括中型企业在内更多的机构可获得的大数据解决方案。
3.大数据分析流程将更加自动化
adaptivecomputing的调查显示,84%接受调查的机构都有分析大数据的人工流程。人工的方法耗费时间,通常导致利用率不高和竖井式的计算环境。这种说明了为什么90%的机构受访者从更好的分析流程或者工作流中会得到更好的满意度。要更有效地处理模拟和数据分析,更多的机构将实现自动化的工作流、最大限度降低成本和减少容易产生错误的人工工作。
4.大数据工作流的数量和复杂性将开始更大规模地影响到企业
adaptivecomputing的调查显示,72%的接受采访的机构认为工作流程会影响其业务。这是因为企业建立不同类型的数据集和数据库以及每一项工作所需要的相应的应用的复杂性。在没有实现自动化的情况下运行计算和数据密集型的大数据工作流程容易引起阻塞和延迟出现结果。adaptivecomputing预测称,更多地以自动化工作流程为重点将消除阻塞和帮助从大数据中提取关键的信息,加速了解业务的内部情况。
5.更有效的大数据分析将增加收入来源
市场研究公司gartner在2014年1月发表的题为“用户调查分析:提高效率降低成本是作出新技术解决方案决策之王”的研究报告称,移动性、大数据和分析对于机构来说比社交网络更重要。这与gartner最近对厂商进行的调查结果是一致的。在这项调查中,2015个提供商表示,大数据分析产生的收入是社交网络产生的收入的三倍。adaptivecomputing预测称,通过提高效率、减少内部成本和启用新的业务模式,大数据分析将产生更多的收入。
最早提出“大数据时代”已经到来的机构是全球知名咨询公司麦肯锡。麦肯锡在《大数据时代到来》报告中指出,大数据现在已经进入全球经济的各个部门,就像其他的生产必备要素一样,许多现代经济活动离开了它根本不能发生,大数据将带来一波生产率增长和消费者盈余浪潮。而至今,它也将开启中国监控资本市场的新一轮的寻宝游戏。
在视频监控领域,伴随着高清监控时代的大潮,产生了越来越多的海量视频数据。但是,大量的视频数据仍然是独立的、零散的。视频录像数据散布在各个行业、单位独立的系统中,没有发挥达到联网、共享,业界也没有形成对数据挖掘、利用的通用方法,核心技术仍然在研究中,尚没有实现重大突破。
目前大量的视频监控数据运用于安防领域,但主要以人工搜索为主,政府之间跨警种、跨部门、跨区域的联网共享应用仍然较少,更不用说为老百姓、为社会所用的应用还没有启动。如能开放这些视频资源,为老百姓服务,而不仅仅用于治安、刑事案件,能通过信息公开、数据共享、数据挖掘推动新型的数据服务业的大发展,将是社会的福音。
大数据是未来发展趋势,中国很多公司现在都在做大数据业务,但真正将大数据的挖掘和应用落到实处,转变为商业模式的企业还是很少,目前很多大数据概念都是噱头。
而安防企业需要做的,便是积极加强内功,提高研发能力,加强技术储备,应对更大数据量带来的冲击。后期安防厂家会进行分化,部分传统安防厂家更加专注于某固定安防领域继续深耕,专注于产品和技术,一部分安防厂家会向大安防集成平台转变,专注于业务整合和数据分析处理。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18