京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据:变革世界的关键资源
人类文明进步的每个阶段都有一张最具代表性的历史标签:19世纪是煤炭和蒸汽机,20世纪是内燃机、石油和电力。进入21世纪,由信息技术和互联网所引发的新一轮科技革命和产业变革更加深刻地诠释着人类进步的征程。其中,最具时代标志性的标签非大数据莫属,它好比是21世纪的石油和金矿,是一个国家提升综合竞争力的又一关键资源。
大数据既是一类数据,也是一项技术。作为数据,它呈现容量大、增长速度快、类别多、价值密度低等特征;作为新一代信息系统架构和技术,它能够对数量巨大、来源分散、格式多样的数据进行采集、存储,并进行关联性分析。大数据通过数据整合分析和深度挖掘,发现规律、创造价值,进而建立起从物理世界到数字世界和网络世界的无缝链接。大数据时代,线上与线下、虚拟与现实、软件与硬件重叠交错、跨界融合,将重塑我们的认知和实践模式,开启一场新的产业突破与经济转型。
我们正处于大数据变革的时代。移动互联网、智能终端、新型传感器快速渗透到地球的每一个角落,人人有终端、物物可传感、处处可上网、时时在链接,数据增长速度用几何式增长甚至爆发式增长都很难形容得贴切。有机构预计,到2020年全球数据使用量将达到约44ZB(1ZB=10万亿亿字节),将涵盖经济社会发展各个领域。由此产生的革命性影响将重塑生产力发展模式,重构生产关系组织结构,提升产业效率和管理水平,提高政府治理的精准性、高效性和预见性。毋庸置疑,大数据将创造下一代互联网生态、下一代创新体系、下一代制造业形态以及下一代社会治理结构。
大数据还将改变国家间的竞争模式。世界各国对数据的依赖快速上升,国际竞争焦点将从对资本、土地、资源的争夺转向对大数据的争夺,重点体现为一国拥有数据的规模、活跃程度以及解析、处置、运用数据的能力,数字主权将成为继边防、海防、空防之后又一个大国博弈领域。各主要国家已认识到大数据对于国家的战略意义,谁掌握数据的主动权和主导权,谁就能赢得未来。新一轮大国竞争,在很大程度上是通过大数据增强对世界局势的影响力和主导权。
经过多年努力,我国已拥有全球最多的互联网用户和移动互联网用户、全球最大的电子信息产品生产基地、全球最具成长性的信息消费市场,培育了一批具有国际竞争力的企业。庞大的用户群体和完整的经济体系积累了丰富的数据资源,而工业互联网将进一步激发大数据发展的潜力,不断拓展信息产业新蓝海。
当前和今后一个时期,创新、变革、融合成为产业发展主旋律,蕴藏巨大发展机遇。随着我国经济发展进入新常态,无论保持经济中高速增长、促进产业迈向中高端水平,还是营造大众创业、万众创新的发展环境,大数据都将充当越来越重要的角色,在经济社会发展中的基础性、战略性、先导性地位也将越来越突出。
2015年是我国建设制造强国和网络强国的关键之年,国家制定发布了《中国制造2025》和“互联网+”行动计划,极大地激发了全民创新创业的热情,也明确了大数据发展的战略方向。日前,国务院常务会议通过了《关于促进大数据发展的行动纲要》,强调开发应用好大数据这一基础性战略资源。应按照建设制造强国和网络强国的战略部署,加强信息基础设施建设,提升信息产业支撑能力,构建完善以数据为核心的大数据产业链,推动公共数据资源开放共享,加快推动核心技术、应用模式、商业模式协同创新发展,将大数据打造成新常态下经济提质增效升级的新引擎,为经济发展和社会进步提供更加有力的支撑
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06