京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据与数字化营销
【大数据与数字化营销】据对美公司首席信息官(CIO)的调查发现:仅23%的公司在收集顾客的人口信息和消费习惯之类的数据,并且利用这些数据进行战略决策。但其中却仅有46%的公司拥有数据分析的资源或系统。他们面对的主要挑战在于数据处理、信息管理和数据分析难题。数据管理平台(DMP)发展空间巨大,将是未来数字营销的理想工具。
文章全文:
To Handle Big Data, Advertisers Turn to DMPs
There’s a big to-do about Big Data and data management platforms (DMPs) in the digital advertising space. According to a new eMarketer report, “Data Management Platforms: Using Big Data to Power Marketing Performance,” DMPs enable marketers to use their Big Data to make smarter and more efficient marketing decisions.
Still even as brands use Big Data to build a holistic picture of their potential and real customers, many still find it challenging to extract cross-channel insight from that data.
Ziff Davis found 49% of companies polled worldwide had enacted a data management strategy as of fall 2012. And according to a survey from IT staffing service Robert Half Technology, just 23% of US chief information officers (CIOs) said they were collecting customer data such as demographic information or buying habits. Of that small percentage, less than half (46%) reported having the resources or systems to analyze the information they gathered.
A very general term, Big Data can refer to first-party customer information, third-party audience data, offline purchase data, online advertising behavioral data, campaign analytics and much more.
It can prove challenging to integrate disparate sets of data coming from social media, campaign analytics, offline sources or third parties. In fact, Big Data solution provider Infochimps surveyed IT professionals in North America and found that 83% of respondents said processing such information was a leading Big Data challenge, followed by managing the information (42%) and analyzing the data (41%).
If data is digital marketing’s currency, then the DMP is its bank. Big Data is stored and standardized here so that each data asset can be tied to a particular customer or audience segment. Once standardized, marketers can use that information to power multiple functions, both within digital and across a company’s broader marketing program.
DMPs can house both structured data, typically quantitative in nature, as well as unstructured data, often qualitative in nature—for example, social network data. Once all of these disparate sources are entered, DMPs can standardize them to build a larger, more descriptive picture of a customer or audience base that marketers can act on.
The DMP’s ability to take all of that Big Data from first-, second- and third-party sources and then organize it into meaningful audience segments makes it an ideal tool for audience targeting. This function—particularly for first- and third-party data—was also the top-reported competency of DMPs by US marketing professionals in a September 2012 surveyed by Winterberry Group.
Other than their role in organizing data on customers, DMPs are also a prime tool for campaign measurement, both within digital and across platforms.
“There’s real value in being able to address the audience first to determine what to buy,” said Mark Zagorski, CEO of data provider eXelate. “By looking at your audience and how they’re interacting with a particular ad or promotion, you can take those learnings and feed them into your current efforts and your next campaign.”
The full report, “Data Management Platforms: Using Big Data to Power Marketing Performance” also answers these key questions:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA一级知识点汇总手册 第三章 商业数据分析框架考点27:商业数据分析体系的核心逻辑——BSC五视角框架考点28:战略视角考点29: ...
2026-02-20CDA一级知识点汇总手册 第二章 数据分析方法考点7:基础范式的核心逻辑(本体论与流程化)考点8:分类分析(本体论核心应用)考 ...
2026-02-18第一章:数据分析思维考点1:UVCA时代的特点考点2:数据分析背后的逻辑思维方法论考点3:流程化企业的数据分析需求考点4:企业数 ...
2026-02-16在数据分析、业务决策、科学研究等领域,统计模型是连接原始数据与业务价值的核心工具——它通过对数据的规律提炼、变量关联分析 ...
2026-02-14在SQL查询实操中,SELECT * 与 SELECT 字段1, 字段2,...(指定个别字段)是最常用的两种查询方式。很多开发者在日常开发中,为了 ...
2026-02-14对CDA(Certified Data Analyst)数据分析师而言,数据分析的核心不是孤立解读单个指标数值,而是构建一套科学、完整、贴合业务 ...
2026-02-14在Power BI实操中,函数是实现数据清洗、建模计算、可视化呈现的核心工具——无论是简单的数据筛选、异常值处理,还是复杂的度量 ...
2026-02-13在互联网运营、产品迭代、用户增长等工作中,“留存率”是衡量产品核心价值、用户粘性的核心指标——而次日留存率,作为留存率体 ...
2026-02-13对CDA(Certified Data Analyst)数据分析师而言,指标是贯穿工作全流程的核心载体,更是连接原始数据与业务洞察的关键桥梁。CDA ...
2026-02-13在机器学习建模实操中,“特征选择”是提升模型性能、简化模型复杂度、解读数据逻辑的核心步骤——而随机森林(Random Forest) ...
2026-02-12在MySQL数据查询实操中,按日期分组统计是高频需求——比如统计每日用户登录量、每日订单量、每日销售额,需要按日期分组展示, ...
2026-02-12对CDA(Certified Data Analyst)数据分析师而言,描述性统计是贯穿实操全流程的核心基础,更是从“原始数据”到“初步洞察”的 ...
2026-02-12备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09