
解读诺贝尔奖“大”数据:想获奖先搬家
2015年的诺贝尔奖已经公布,咱们中国的女科学家屠呦呦获奖,真是举国振奋的好消息。
众所周知,诺贝尔奖的设立,对物理学、化学、医学的发展起着重要的激励作用。自1901年诺贝尔奖首次颁发到2014年为止,在过去114年中,已经有889位来自物理、化学、生理/医学、经济学、文学等方面的杰出人士获奖。他们的研究成果影响着世人,改变着世界,为当今科学的进步做出了巨大的贡献。
“中奖”虽然绝非易事,但也有规律可循。获奖者都有哪些相似点呢?都来自什么地方?下面我们就通过一张图试着分析下规律。
这是一张记录了在1901年到2012年期间每一位获奖者信息的图片,包括了获奖年份,研究领域、所在机构以及学术方向。
看起来很复杂?且听小编下文分解。
首先总体来看,这张图的X轴代表获奖年份,Y轴代表获奖者的年龄,具体可以看上图的图例。图例上标示了所有获奖者的平均年龄,以及每个奖项获奖者的平均年龄。甚至标注了每一年每一位奖项颁发的人数,学历、性别以及获奖的时候所在大学的具体情况。
在名校工作的获奖者更多
由这张图可以看出,获奖者最多的七所大学分别是哈佛大学、麻省理工学院、斯坦福大学、加州理工学院、剑桥大学以及加州伯克利分院。这些都是世界名校,能进去其中工作的人都是领域内的佼佼者,而且这里不仅有优越的研究条件,还有优秀的合作伙伴,获奖者多也并不意外。
不仅要有成果,还要长寿
再来看获奖者的平均年龄,我们以化学奖来举例,所有获奖者的平均年龄为59岁,但化学奖获得者平均为57岁,不过近年来获奖人士的年纪普遍超过了平均年龄。这一方面是因为科学家们真的是“老骥伏枥,志在千里”,另一方面也是因为诺贝尔奖越来越倾向于“让时间先来检验成果”,这种趋势也带来了一些遗憾,给某个成果颁奖时,这个成果的核心人物已经去世了。
科学与性别无关
获奖者有男性也有女性,在这张图中都有统计数据,但这仅仅是为了统计之用。虽然目前来看,女性获奖者少于男性获奖者,但这背后有着复杂的社会因素,近年女性科学家们越来越杰出的表现已经说明了,其实性别并不重要,科学并没有国家、血统以及性别之分,只要在其领域中做出了卓越贡献就可以获奖。
想获奖?先搬家
你想获奖吗?那先搬家吧。这张图片还统计了获奖者的居住地,看来想获奖还得选地方啊。图中显示住在纽约的获奖者最多,有51人。位居次席的是巴黎,有23人之多,巴黎人不只浪漫,还是盛产诺奖的城市啊。怎么样,心动了吗?走,咱去巴黎吧。
团结就是力量
你知道诺贝尔奖可以几人共同分享吗?其实这种情况挺多的,在图中也有显示,那么究竟有多少呢?诺奖颁发了多少次呢?我们从诺贝尔奖的官方网站找到了相关数据。
获奖者多为博士
最后来看看获奖者的学历。由这图中可以看出,虽然在各个领域里获奖者以博士学历者居多,但也有以硕士、学士学历获奖的,这里边的差异是因为有些学科,硕士学位就可以了,不一定要博士学位才有更好的发展。在诺贝尔文学奖中,这一情况则不同。文学奖是比较特别的奖项,跟获奖人的学术高低无关,只跟你的作品有关,所以很多获奖者根本没有学位,而且没有学位的获奖者甚至占多数。还有一个奖项也是这样的情况,这就是诺贝尔和平奖。
从这张图中看,你会发现有些获奖者甚至很年轻,甚至还是个孩子,自然也没有学位了。例如2014年诺贝尔和平奖的获得者之一巴基斯坦女孩马拉拉当时才17岁,颁奖词称赞其“反抗针对儿童和年轻人的压迫,捍卫了儿童受教育的权利”。
居里夫人
图中还有特殊的注解,例如居里夫人是第一个两次获得诺贝尔奖的获奖者;简?丁伯根和尼可拉斯?丁伯根是唯一两兄弟都获得诺奖的亲兄弟,分别是经济学奖和医学奖。闻名世界的无线电之父马可尼是唯一一个没有学位的物理学获奖者。
简?丁伯根和尼可拉斯?丁伯根兄弟
2015年的诺贝尔奖已于10月5日至9日陆续发布,感兴趣的朋友也可以看看,今年的获奖者们是否吻合这张图中的规律。
最后,感谢科学进步对人类发展的推动,感谢获奖者们为世界做出的贡献。
注:
1、多次获奖的获奖者:居里夫人是第一个获得过两次诺贝尔奖的人(化学和物理)。
2、年纪最长的获奖者:莱昂尼德?赫维奇获奖的时候90岁。
3、最年轻的获奖者:威廉?劳伦斯?布拉格获奖时25岁(这个图表只到2012年,2014年巴基斯坦女孩马拉拉17岁获得和平奖)。
4、兄弟获奖:简?丁伯根和尼可拉斯?丁伯根是唯一两兄弟都获得过诺奖的亲兄弟(分别是经济学奖和医学奖)。
5、没有学位的获奖者:马可尼是唯一一个没有学位的获奖者(特指物理学奖)。
6、去世后获奖者:埃利克?阿克塞尔?卡尔费尔德(瑞典人)是唯一一个去世后获奖的人。
7、第一个女性经济学奖获得者:埃莉诺?奥斯特罗姆,是第一位也是唯一一位获得诺贝尔经济学奖的女性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10