
解读诺贝尔奖“大”数据:想获奖先搬家
2015年的诺贝尔奖已经公布,咱们中国的女科学家屠呦呦获奖,真是举国振奋的好消息。
众所周知,诺贝尔奖的设立,对物理学、化学、医学的发展起着重要的激励作用。自1901年诺贝尔奖首次颁发到2014年为止,在过去114年中,已经有889位来自物理、化学、生理/医学、经济学、文学等方面的杰出人士获奖。他们的研究成果影响着世人,改变着世界,为当今科学的进步做出了巨大的贡献。
“中奖”虽然绝非易事,但也有规律可循。获奖者都有哪些相似点呢?都来自什么地方?下面我们就通过一张图试着分析下规律。
这是一张记录了在1901年到2012年期间每一位获奖者信息的图片,包括了获奖年份,研究领域、所在机构以及学术方向。
看起来很复杂?且听小编下文分解。
首先总体来看,这张图的X轴代表获奖年份,Y轴代表获奖者的年龄,具体可以看上图的图例。图例上标示了所有获奖者的平均年龄,以及每个奖项获奖者的平均年龄。甚至标注了每一年每一位奖项颁发的人数,学历、性别以及获奖的时候所在大学的具体情况。
在名校工作的获奖者更多
由这张图可以看出,获奖者最多的七所大学分别是哈佛大学、麻省理工学院、斯坦福大学、加州理工学院、剑桥大学以及加州伯克利分院。这些都是世界名校,能进去其中工作的人都是领域内的佼佼者,而且这里不仅有优越的研究条件,还有优秀的合作伙伴,获奖者多也并不意外。
不仅要有成果,还要长寿
再来看获奖者的平均年龄,我们以化学奖来举例,所有获奖者的平均年龄为59岁,但化学奖获得者平均为57岁,不过近年来获奖人士的年纪普遍超过了平均年龄。这一方面是因为科学家们真的是“老骥伏枥,志在千里”,另一方面也是因为诺贝尔奖越来越倾向于“让时间先来检验成果”,这种趋势也带来了一些遗憾,给某个成果颁奖时,这个成果的核心人物已经去世了。
科学与性别无关
获奖者有男性也有女性,在这张图中都有统计数据,但这仅仅是为了统计之用。虽然目前来看,女性获奖者少于男性获奖者,但这背后有着复杂的社会因素,近年女性科学家们越来越杰出的表现已经说明了,其实性别并不重要,科学并没有国家、血统以及性别之分,只要在其领域中做出了卓越贡献就可以获奖。
想获奖?先搬家
你想获奖吗?那先搬家吧。这张图片还统计了获奖者的居住地,看来想获奖还得选地方啊。图中显示住在纽约的获奖者最多,有51人。位居次席的是巴黎,有23人之多,巴黎人不只浪漫,还是盛产诺奖的城市啊。怎么样,心动了吗?走,咱去巴黎吧。
团结就是力量
你知道诺贝尔奖可以几人共同分享吗?其实这种情况挺多的,在图中也有显示,那么究竟有多少呢?诺奖颁发了多少次呢?我们从诺贝尔奖的官方网站找到了相关数据。
获奖者多为博士
最后来看看获奖者的学历。由这图中可以看出,虽然在各个领域里获奖者以博士学历者居多,但也有以硕士、学士学历获奖的,这里边的差异是因为有些学科,硕士学位就可以了,不一定要博士学位才有更好的发展。在诺贝尔文学奖中,这一情况则不同。文学奖是比较特别的奖项,跟获奖人的学术高低无关,只跟你的作品有关,所以很多获奖者根本没有学位,而且没有学位的获奖者甚至占多数。还有一个奖项也是这样的情况,这就是诺贝尔和平奖。
从这张图中看,你会发现有些获奖者甚至很年轻,甚至还是个孩子,自然也没有学位了。例如2014年诺贝尔和平奖的获得者之一巴基斯坦女孩马拉拉当时才17岁,颁奖词称赞其“反抗针对儿童和年轻人的压迫,捍卫了儿童受教育的权利”。
居里夫人
图中还有特殊的注解,例如居里夫人是第一个两次获得诺贝尔奖的获奖者;简?丁伯根和尼可拉斯?丁伯根是唯一两兄弟都获得诺奖的亲兄弟,分别是经济学奖和医学奖。闻名世界的无线电之父马可尼是唯一一个没有学位的物理学获奖者。
简?丁伯根和尼可拉斯?丁伯根兄弟
2015年的诺贝尔奖已于10月5日至9日陆续发布,感兴趣的朋友也可以看看,今年的获奖者们是否吻合这张图中的规律。
最后,感谢科学进步对人类发展的推动,感谢获奖者们为世界做出的贡献。
注:
1、多次获奖的获奖者:居里夫人是第一个获得过两次诺贝尔奖的人(化学和物理)。
2、年纪最长的获奖者:莱昂尼德?赫维奇获奖的时候90岁。
3、最年轻的获奖者:威廉?劳伦斯?布拉格获奖时25岁(这个图表只到2012年,2014年巴基斯坦女孩马拉拉17岁获得和平奖)。
4、兄弟获奖:简?丁伯根和尼可拉斯?丁伯根是唯一两兄弟都获得过诺奖的亲兄弟(分别是经济学奖和医学奖)。
5、没有学位的获奖者:马可尼是唯一一个没有学位的获奖者(特指物理学奖)。
6、去世后获奖者:埃利克?阿克塞尔?卡尔费尔德(瑞典人)是唯一一个去世后获奖的人。
7、第一个女性经济学奖获得者:埃莉诺?奥斯特罗姆,是第一位也是唯一一位获得诺贝尔经济学奖的女性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28