
大数据让城市管理有”据”可循
大数据这个词早已红透了半边天,从用大数据拍电影、电视剧,到大数据医疗,再到大数据押宝高考作文题,似乎大数据早已成了一件万能工具,无处不在,无所不能。既然如此,在利益格局多元化、社会需要多样化的公共决策与公共服务领域,大数据是否也能一显身手,让所有政策都有据可依、有“数”可循,大数据决策离我们还有多远?
国事家事天下事 事事都有大数据
今年年初,备受关注的“单独两孩”政策在各地落地后,国家卫生和计划生育委员会宣传司司长、新闻发言人毛群安曾透露,为这项政策的出台,相关机构和部门做了将近10年的研究,对人口政策采取什么样的调整都进行过数据模拟。
毛群安在这里提到的数据模拟其实就是大数据决策的一种。在其后提供数据分析与支持的是一个名为“国家人口宏观管理与决策信息系统(PADIS)”的项目。PADIS系统依托国家电子政务网络平台,整合了来自公安、统计、民政、卫生、财税、教育、劳动与社会保障、资源、环境、农业、建设等各个部门的数据,能在计算机中建立一个虚拟社区。在这个小社会里,从新生儿的出生、儿童的就学,到大学生毕业后的就业和成年人的婚姻生育状况等于人口相关的关键状态都会有所体现。只需将具体的政策输入计算机,就能看到几年、几十年、甚至上百年后,这些政策所产生的影响。
大数据同样可以被用于城市交通规划。PADIS还曾对某个城市的交通拥堵问题进行过预测分析。与认为应该限制人口和机动车数量,加快发展公共交通的传统观点不同,PADIS的预测结果显示,人口集中居住区域与经济中心的严重偏离才是导致市民出勤需求上升、交通恶化的根本原因,单纯的增加公共交通设施、控人控车只是扬汤止沸。为此,PADIS开出的“药方”是改善城市规划管理,让城市向多中心方向发展。
除了能帮助政府调整计生政策、规划交通外,这一系统还能凭借其拥有的海量数据和强大的模拟预测能力,对延迟退休、养老金缺口、环境治理、房价上涨等热点问题提出自己的“真知灼见”,范围足以涵盖我们生活的方方面面。
数据来数据去 靠人还是靠数据
大数据的魅力在于能够通过对海量数据的分析,以一种前所未有的方式获得具有巨大价值的产品或深刻的洞见。那么是不是就意味着可以完全相信计算机,让数据和软件来帮助我们做决定?
答案当然是否定的。PADIS系统项目技术总监、神州数码信息服务股份有限公司大数据首席专家史文钊认为,现在没有也不应该制造出一个自动决策系统。他说,大数据只能辅助决策而不能代替决策。总结这些年的经验,最好的系统应当是人和计算机的完美结合。大数据应用十分强大而且还会更加强大,神州信息基于大数据研发的智慧城市综合决策系统能实现经济、交通、环境污染等多种政策模拟分析等各种功能,但它仍然只是一个辅助决策系统。就如同人口预测一样,面对需要解决的问题时,基于大数局和建模分析只能把可供选择的选项,和它们可能带来的影响提供给决策者,最终采用哪一个、如何执行、力度多大还得由决策者结合各方面的因素综合决定。
史文钊说:“以‘单独两孩’政策为例,虽然在政策上只是前进了一小步,但对政府科学决策而言,这完全称得上一大步。体现出了政府在管理理念和治理模式上的转变。”
贫矿数据富矿数据 用好了才是好数据
互联网女皇玛丽?艾克在《2014年互联网趋势报告》中专门将大数据提了出来,认为在2014年大数据将更加实用,比以往更加贴近普通人的生活。一些依靠解读数据提供解决方案的新型服务开始出现,大数据解决大问题的趋势开始显现。同时她还发现在现有的通用数据中有34% 的信息具备研究价值,但其中只有7% 的数据被做了标记,被分析过的只有1%。数据获取固然重要,但缺乏分析的数据毫无意义。
因此,可以说“大数据”的真正价值在于挖掘和分析。“大数据的大不仅是数量的大更是价值的大”,史文钊说:“大数据真正的价值不是海量的数据简单集合,而是找到这些数据之间的关联,发现它们背后的规律,为解决实际问题服务。如同矿藏一样,数据也有贫矿富矿之分。在目前的情况下,尤其是在智慧城市建设中,我们需要注重的应该是如何盘活已有数据存量,用好大数据增量,来提升城市公共服务能力和管理决策水平。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14