京公网安备 11010802034615号
经营许可证编号:京B2-20210330
中小卖家利用大数据不在概念在操作
电商行业现在已是人人开口必讲大数据,运营者自以为有大数据支持便可预测用户行为、找到精准用户以期实现销售的几何倍数增长。但对于绝大多数的中小卖家而言,大数据更多时候如同镜花水月一般,看着诱人实则无法去利用。诚然,一方面卖家只能获得基础订单数据信息,其数据维度之小是难以称得上是大数据的;而另一方面中小卖家的经营模式也不太可能引入专业的数据分析师。
如何将数据进行共享且进行简单化操作是当前中小卖家最迫切需要的。
此前以淘宝为代表的电商平台在平台大数据方面所做工作很多,如码上淘产品在搜集用户信息以及平台进行精准化营销方面做了大量工作。铁哥认为,此是平台方在与用户之间的大数据关系的建立,系统通过用户数据匹配最精准需求,提高营销精准度。
而对于无数的卖家而言,自己依然无法实际操作大数据,换句话说卖家方面对于大数据更多还是跟从平台脚步,自己鲜有动作通过大数据拉新,提高成交量。如何让卖家有选择性的通过平台数据共享机制获得营销效果,是电商平台需要迫切解决的。
不久前阿里妈妈“阿里魔镜”项目上线限时内测,铁哥作为卖家一员测试以为对于卖家确实解决了长期以来无法利用大数据的难题。
其一,大数据不再枯燥
大数据是个极其枯燥的学科,其基本包括:数据搜集、筛选、建模、解读、运用等环节,非有数学专长根本无法开展。这也是即便将数据共享给卖家也无法完全运用的根本原因。
而在该产品中,卖家不需要对数据中间的处理过程负责,只需要一键便可完成大数据运用的多个环节,直接进入运用阶段。
这最大程度上减轻了卖家对数据运用的恐惧程度,傻瓜式的操作方式对大数据的运用普及贡献极大。
其二,精准解决商家拉新需求
电商卖家日常最重要无非三件事:1.运营2.留客3.拉新。前两者可通过店铺现有工具和营销方式基本可实现,而对于拉新往往过多依赖于现有营销工具,尚未把大数据完全利用起来。其中以往营销产品过多集中于对某个产品或同类产品的相关用户进行潜力挖掘,难以称得上是真正的大数据运用。
而“阿里魔镜”则不同,本质上其核心方法是将以广告主的已购用户为种子用户,为广告主找到潜在客户,潜在客户经过广告触达后,购买了广告主的商品,成为了已购用户。然后对已购用户再进行分层管理,持续拉新,持续维护老客户。也就意味着以往是基于店铺以及商品属性进行的精准营销,将直接升级为基于产品和目录认知的精准营销。可有效解决商家拉新的问题。
其三,基于大数据的算法营销注定是风口
此前广告业的广告投放模式相对粗放,有完全基于展示的,亦有根据简单cookie所认为的精准营销,当然也有简单的基于购买以及浏览习惯,常见为用户购买某产品后部分广告平台仍然推荐该产品。数据运用的粗暴以及缺乏预测性,是传统网络广告行业发展最大瓶颈。
而基于大数据的算法营销则是完全依据多维度多数据量的大数据,以科学数学模型为手段,精准找到最具有购买潜力的用户,进行精准化营销。在寻找精准用户时并非完全依据大数据,而是依据单一或者较少维度数据进行,其精准营销效果往往大打折扣。而此次“阿里魔镜”产品是阿里妈妈方面在基于大数据的算法营销方面的一次领先尝试,对于中小卖家而言通过该产品不仅可提高店铺转化量且由于属于更为精准营销,也可降低店铺运营成本,尤其在拉新方面的投入。整个网络广告界草创阶段的粗暴做法也行将结束,类似“阿里魔镜”这般算法营销将注定成为主流。
但铁哥也提醒大家,切不可被同类概念忽悠,平台做算法营销要基于三大要素:1.用户量大2.产品线广,用户行为多,数据维度多3.有交易闭环行为。如此,平台获得的数据才是真正大数据,其营销也才称得上的是精准营销,这也是阿里能够率先采用此类手段的重要原因。
最后建议中小卖家少听所谓大师的大数据运用手段,离开平台的大数据都是忽悠。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27