京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作为一个受过专业培训的数据工作者,我是早先加入贝尔实验室网络性能组的人员之一。此后的一两年左右,我开始了数据汇报。我的第一次大型数据汇报是在AT&T(美国电话电报公司)总部。在提前做了充分的准备和细致的演练的情况下,我前去赴会。
我的展示糟糕至极,没有给人留下任何好印象。那时的我年轻气盛,将责任归咎于他人,甚至包括听取汇报的观众。我说:“这里的部门经理甚至看不懂一张饼图。”
一位听取过众多类似汇报的资深人士对我的表现大跌眼镜,他对我如是说,“当然看不懂,汤姆,他们不需要看懂,让他们明白数据的含义是你的工作。”
那是我在展示数据的第一个经验。一个数据分析汇报工作者面临一项艰难的任务,即让他人明白并相信数据的含义,并且要照顾到听众的专业背景,以易于听众理解的方式展示汇报数据。最好的方式就是将数据划分层次,并配上通俗易懂的解释说明。正如爱德华·塔夫特所建议的,<用生动有力的方式讲解数据>标记轴线,不要曲解数据的含义,同时将非相关信息图表减至最少。
数据报告中充斥着太多如“精确度”、“分数记录”之类不为大众所熟知的专业术语。在没有解释说明的情况下,听众很容易不知所云。
听众不同,需求不同,汇报人的阐释要尽可能简明扼要。比如,技术团队希望搞清楚选择度量的细节和制作图标的软件;高层领导想要明白扩展数据对于整个机构的意义。汇报对于每个听众是一样的,但却听众的需求却各有侧重。
要清楚很多人对于数据分析,数据库和统计数据是持怀疑态度的,(你可能会想到那句有名的谚语:“世界上有三种谎言,即谎言,该死的谎言和统计数据。”)不管这样的怀疑是否有道理,它确实使得机构运行好创意的脚步放慢甚至终止。作为一名数据汇报者,肩负着让听众信任数据的神圣使命。汇报人一定要做到:
1、汇报尽可能准确、直白,特别是在汇报成果不利的情况下,更应如此。此外,如果数据结果显得有点不太明智,一定要简单地陈述事实。
2、如果展示的是一张综合性图表,对于重要信息的遗漏就等于是在说最糟糕的谎言。
3、提供适当的背景介绍,如数据来源,为确保数据真实有效所做的工作。(如果对此所做之事甚少,一定要言简意赅地说明“数据来源不明,可能会影响到结果”)
4、总结数据分析,包括汇报结果的不足之处和替代说明。
陈述自己的观点无可厚非(通常也是合理的),但一定要将自己的观点和事实分开。不论分析有多到位,总有言过其实的地方,直觉会混淆事实。要清楚两者之间的界限。
现在更进一步关注听众需求。成功的汇报案例大多是以让听众明白幻灯片展示内容为基础。听众在观阅连续播放的幻灯片时,可能无法从你的汇报中有所收获,所以你必须考虑到他们的需求。早先在贝尔实验室时,我曾听说“听众读表的平均时间在15秒,不要让他们花费13秒去搞懂如何读图。尽可能多地在可以标记的地方加上注释,能让图表替你说话更好。”
根据此想法,进行两个步骤。第一,在幻灯片说明页提供如何读图的解释。第二,如下图所示为图表注解。注释当然不可能取代汇报,它们只是为听众提供相关信息。
对于大多数听众来说,即便是为微小的洞察做出长篇大论的分析也在所不惜。因此,手边的一张切中问题要害并能引导后续步骤的出色图表要胜过万千无用的图。找到这样出色的图,以此来展示,数据就是力量。
只要你有值得分享的见解和结论,我所建议的方法并不难于实践。领导们,甚至是那些对数据持怀疑态度的人们,迫切期待改善提升部门和公司的方法。作为一名汇报人,你的工作就是以最简明的方式发掘并满足他们的需求。(文章来源:CDA数据分析师)
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27