京公网安备 11010802034615号
经营许可证编号:京B2-20210330
半导体制造行业如何应用大数据分析
意法半导体是世界第五大半导体元件制造商,拥有业内最全的生产线之一,产品从分立二极管、晶体管,到整套平台解决方案,一应俱全。
意法半导体是一家跨国企业,总部位于瑞士日内瓦。意法公司的产品在许多领域处于行业前列:工业半导体、汽车电路半导体、移动电话的相机模组半导体,以及发展迅速的微机电系统半导体(用于温度传感器,安全气囊、心脏起搏器的加速计等)。
意法半导体(简称ST)在半导体制造行业内保持领先。这一行业竞争力极大,对更先进技术的需求从未间断,生产工艺复杂,周转时间紧张。
MatteoPatelmo、Diego Gerosa和Vincenzo Palumbo都是意法半导体的工程师,负责应对上述挑战。他们的工作地在一座靠近米兰的意大利小城,阿格拉泰布里亚恩扎(Agrate Brianza),工作重心正是用于控制高压、高功率设备的智能电力技术。这一技术在意法半导体的业务中占很大比重,而阿格拉泰布里亚恩扎(Agrate Brianza)是其研发制造该技术的中心。
意法半导体是全球行业领导者,业务范围覆盖所有电子元件。为该公司效力的意大利工程师们正专注于开发下一代智能电力技术。
“激发探索欲”
Matteo Patelmo,意法半导体电子器件经理,使用JMP软件已近10年了。像许多JMP用户一样,一开始他也是被JMP软件的图形展示功能(能让数据以更为易懂的形式呈现出来)、以及其简易的操作方法所吸引的。Patelmo只在大学里学过一点统计学,专业背景并不深。
“但使用JMP,其实不必有多深的专业背景。”Patelmo表示,“真的,除了基本知识——像标准差什么的——其他都不是很必要。”
“JMP能激发用户的探索欲。”Patelmo补充道,“因为看分析结果时,用户有可能遇到不熟悉的术语,就会想法弄清这些术语的含义——然后就会发觉自己从中得到了有用的信息,学到了新知识。”
Patelmo与其同事正在设法提高几项技术的产能,这几项技术近期已产出了成品。每次生产流程结束后,他们都会进行产品检测,以保证各项参数符合技术指标。
不过,有时生产环境还未配备完全,相应的新产品就已研发出来了。这是一个大问题。
“我们必须以极快的速度推出并生产产品,同时也必须保证所有产品都符合技术指标,哪怕生产环境还未完全齐备。”Patelmo表示,“JMP能够让我们轻松完成这些任务,如通过模拟还未制造出的生产工具的方式。”
解决难题的软件
当设计好的产品付诸生产,就可能涉及到400-500个生产步骤,整个生产流程长达3个月。如果在流程的最后才发现问题——比如某一参数不符合技术指标,Patelmo及其团队就会运用JMP软件中的分割平台功能来检验该批次产品的生产流程,找出曾用过哪些生产设备;再将瑕疵批次产品与高质成品进行对比,从而发现问题设备,有助于工程师们采取恰当补救措施。
Patelmo表示。“分割是很难的工作,但功能十分强大。我觉得,这样复杂的问题交给JMP来解决是最合适不过了”
“幸好纰漏不是每天都出,但生产瑕疵总是难免的。知道自己能够轻松搞定这些数据,对我们工程师来说真是种安慰。”
当位置数据与某一分区的数值产生特殊关联时,意法就运用JMP提高分析及数据呈现有效性。
实验设计
Diego Gerosa是位元件工程师。他运用JMP软件处理不同来源的超大数据集,并表示自己十分欣赏JMP软件的简易与高效。
Gerosa还说,实验设计(DOE)是产品开发过程中另一款十分有用的工具。他自己就运用该功能检测多种变量,如温度与压力对产品的影响。
Vincenzo Palumbo是一位生产设备研发工程师。他运用JMP分析不同参数间的相关性,以确定哪些参数对晶元特性产生最大影响。他也认为JMP是一款问题解决型软件。“我的工作和Diego的不同。”Palumbo说,“我的工作不需要分析大量数据,而通常是分析新元件和结构的参数值。”
Palumbo常用的JMP功能是实验设计、箱形图和相关性工具,同时也非常喜欢JMP的变异性/计数量具图平台以及生存分析功能。
意法半导体的团队还将JMP作为重要的数据呈现手段。
“有了JMP,即使你把大量数据合并到一张图表里,也能轻松地传递正确信息给听众。”意法电子元件工程部经理Patelmo如是说。“你可以准备一张图表,专门以你想要的方式、专门呈现你想要呈现的数据。我真的很喜欢JMP能以不同方式、以最有说服力的手段来呈现数据的功能。”
Gerosa同意这种说法。他说:“比如运用数据表与图表之间的动态关联,我就能建立起数据的实时呈现,并更清晰地看出这一数据真正意味着什么。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06