
当天文学遇到大数据
浩瀚的宇宙自古以来就一直吸引着人类进行不懈探索。天文学这门基于观测的最古老的自然科学,随着科技的进步,目前也迈进了大数据时代。
天文学是最早的数据驱动学科,云计算与大数据技术是制约学科发展的关键因素。除了海量天文数据,在线服务、软件工具、数据处理系统、分析挖掘环境等也都是推动天文科研、科普的重要因素。
海量的数据与先进的信息技术“融合”,在天文学领域结出硕果的同时,将在更广阔的空间发挥引领和示范作用。比如,分布式海量数据存储、大规模计算、新一代应用架构、机器学习和人工智能等方面的技术,帮助中国科学院国家天文台逐步实现数据资源上云,其中包括在贵州最新落成的FAST(中国天眼)观测的数据。
FAST是由中国人创造的世界上最大的单口径射电望远镜,它为我国天文学研究者提供了先进的仪器设备,同时也带来了海量大数据。有统计显示,FAST进入正式科学观测后,每天将产生高达50TB的数据。
在FAST早期观测时,国家天文台采用的是漂移扫描的观测模式,这个模式有一个19波束的接收机,带宽400兆赫兹,通过1G的频率进行采集,它的原始数据的产生率是38个GB每秒,压缩后会小到原来的1/5到1/6,也就是大约6个GB每秒。
国内除了FAST,还有“悟空”卫星等,在国际上我国也有很多大型天文望远镜观测项目,如跨越南非和澳大利亚的一平方千米的天线阵,据称它的原始数据产生率将会超过十个PB每秒,将超过目前全球互联网的带宽,这都将给天文学带来海量数据。
人类从哪里来,宇宙有哪些奥秘,这些其实是生命起源的最基本问题。研究这些基本问题的天文学是一个开放的学科,数据都向全世界开放共享。国际合作是天文学的“基因”,天文大数据将大大推动计算科学的发展。云计算技术发展到一定程度,世界上就会有更多人可以参与到人类这些基本问题的研究中来,产生全球共享的效应。
以郭守敬望远镜为例,它是我国天文学领域第一个国家大科学工程项目,也是世界上光谱巡天效率最高的望远镜。自2009年落成以来,已经获得超过700万天体的光谱,是世界上最大的天体光谱库。目前,郭守敬望远镜的产品数据已经完成上云,并通过对外公开数据发布网站向全世界开放。上云完成后,将大大提升郭守敬望远镜观测数据的显示度和利用率。
在大数据时代,如何访问和使用这些海量的信息成为了全世界天文学家面临的难题。虚拟天文台之父、美国约翰·霍普金斯大学的Alex Szalay教授提出了“虚拟天文台”的设想。
虚拟天文台是通过信息技术,将全球范围内的天文数据无缝透明连接在一起,从而形成数据密集型网络化天文研究与科普教育的平台。多年来,我也一直致力于中国虚拟天文台的研究和建设。
由中国虚拟天文台与微软研究院合作完成的“WWT北京社区”,成为了WWT官方中文门户,正为全球的中文用户提供各种信息和资源。
大数据时代,虚拟天文台拉近了公众与宇宙之间的距离,而中国虚拟天文台和星明天文台推出的“公众超新星搜寻项目”,则为普通公众在欣赏宇宙之美的同时,有了参与天文新发现的可能。也许将来国内有更多拥有天文设备的爱好者、组织团体加入到该项目中,寻找更多类型的天体,也将不断充实虚拟天文台为公众服务的内容和功能。借助大数据带来的科技进步,全民搜星的时代或许很快就会来临。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30