
BI数据集成的作用不可小觑
数据集成是商业智能(BI)流程的关键组成部分,可将来自多个源系统的数据进行整合,并将它们合并到数据仓库以作分析。不过,对于BI数据集成策略,数据管理分析师提醒从业者不可掉以轻心;一旦设计执行不得当,策略很容易就会出现漏洞。
美国Intelligent Solutions咨询公司的总裁Claudia Imhoff说,数据必须及时上传到数据仓库为BI计划所使用,若时机不当,所有的工作就会毁于一旦。由于有些用户需要对数据进行实时处理,这就要求BI和数据集成团队充分理解企业的BI需求。
Imhoff提到,数据质量非常重要,对不良数据进行校对与清理不应该只是BI数据集成流程的专有功能。“错误无处不在,我们需要找出它们的来源。”只有这样,我们才能从一开始就预防源系统的数据错误。实际上,合并错误数据本来就是数据集成和BI专家们工作的一部分,所以出了纰漏他们是要负责任的。她说:“我们需要让员工明白,他们的任务不仅仅是做一个传输者。”
Gartner分析师Ted Friedman认为,BI数据集成存在的最大问题就是人们对数据质量的关注度不够。“我已经从事数据集成工作超过十年之久了,但还是要花很多精力去说服企业,让他们了解BI的作用和价值,使他们接受并信任自己的BI决策,这主要是由于他们还没找到正确的方法保证数据的质量。”
Friedman说,对于“倔强”的企业,数据质量问题的负面影响不仅仅在于BI方面,但糟糕的数据质量绝对是BI项目获得成功实施的主要障碍之一。企业在将信息载入到数据仓库的过程中,从头到尾都忽视数据的质量、发现问题后也不采取任何减缓措施就会造成这样的局面。
James KoBIelus曾在Forrester公司担任分析师,今年初跳槽到了一家技术供应商。他指出,数据质量方面的失误已经成了BI数据集成工作中普遍存在的问题。[page]
KoBIelus曾说过:“企业总以为把后台应用程序中的数据导入数据仓库以后,不需要做任何清理、匹配、融合或者转换工作就可以直接使用。”这样一来,公司总会碰到各种各样出其不意的问题。例如,“同一个名下出现六条记录,没人知道哪条才是正确的。”
BI数据集成的影响力不可小觑
Baseline Consulting公司的创始人之一Jill
Dyche称,还有一个造成数据不一致而产生负面影响的原因,就是企业内部对记录系统结构存在分歧。打个比方,工作人员无法确定哪一个交易系统应该用作客户地址信息源。这样的争论通常涉及“地址”的定义--在各不相同的情况下,到底以客户的账单地址为准?还是送货地址?抑或是公司地址?
Dyche说:“就这样,论战相继而发,于是业务人员开始怀疑BI团队对于正确数据的理解及传输能力。然后,有人就会建议干脆把全部信息丢进一个数据库里,可业务人员又不愿意这么做。”
9sight Consulting公司的创始人Barry Devlin认为,在制定BI数据集成的策略与方案过程中,员工不会造成什么太大的失误。“他们是业务团队中一个特殊的群体,拥有多年的数据处理经验,对数据理解颇深;他们是十足的专家和达人。”因此,对于数据如何进行集成、怎样生成高效的BI应用程序,他们拥有最佳决定权。
Devlin说,尽管如此,IT部门员工在大多数时候不仅负责实施工作,还需要改进数据集成方案。在Devlin看来,虽然IT专业人士可能对企业数据有着很好的理解,但他们还不能称其为真正的专家。他说,使这两个团队联合起来共同完成BI数据集成困难重重,却别无选择。
Imhoff称,目前一些企业对BI毫无经验可言,也不具备满足BI项目数据集成需求的能力,却急于达成目标,制定出不切实际的计划。然而,对数据进行集成并上传到数据仓库这一流程占据了整个BI项目60%到80%的工作量。如果一个项目团队想要一次完成所有的工作,那么他们不久后就会以失败告终。她认为这样的趋势正在愈演愈烈,于是告诫道:“不要指望一口吃成一个胖子。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29