
运营商BI系统走向精细化
近年来,运营商在BI领域的进展有目共睹,一些电信运营商开始在用户的账单上精准营销,通过整合客户数据,利用数据挖掘技术,在每月消费账单中内置营销服务,从而开辟了全新的营销渠道。那么,对于BI未来规划和近期目标,企业专家又有哪些见解?
对话嘉宾:
亚信联创市场咨询部解决方案咨询部经理 彭怀湘
亚信联创业务运营咨询部经理 冀振明
爱立信中国及东北亚区运营与业务支撑系统总监 林 鹏
驱动BI价值走上台前
记者:在采访中,有运营商人士对于BI理解并不深刻,认为其建设投入与实际带来的经济效益不成正比,您如何看待这一问题?
彭怀湘:我认为这是一个误区,错误地将BI系统归为了生产系统,就如同运营商后台系统的计费系统、BSS系统一样。对于BI的实际价值,举一个例子说明,比如我们要开一家杂货店需要选择地段,我们去考察分析决定开在某街道,开张后果然生意很好。我们看到是这家店的盈利能力,而不是当初那个点子。BI则像那个点子,无法直接评估其经济效益。
BI作为分析决策支撑系统,它对于运营商的作用虽然不如其他生产系统那样直接,但却也是在潜移默化地影响着整个后台的系统决策和运作,同时让生产流程系统更加智能化。
林鹏:目前的系统宏观分析有余,微观分析不足;事后分析有余,事先预测不足;静态分析有余,动态挖掘不足;战略分析有余,战术支撑不足;客户服务团队不能得到信息化端到端的有效支撑。
这种情况直接产生了两个后果:企业高层的决策产出多少效益,有多少直接来源于BI系统难以度量。这使得系统成为企业高层经营分析的工具,对基层营销实践指导不足。
举个例子来说,某运营商A因为新型的智能手机广受大量高端用户的青睐,因此A运营商针对B运营商的高价值客户进行了不同策略的吸引,但似乎在B运营商的BI系统并没有事先预测到VIP客户潜在的流失,甚至在事中事后也没有任何客户挽留行动。[page] 以客户接触点为基准
记者:运营商希望通过BI系统不断实现深度营销,但这是一个贯穿多系统的复杂项目,您认为现阶段亟需解决哪些问题?
冀振明:BI系统的深度营销离不开包括电子渠道系统、CRM系统的支撑,我也认为,最关键的是,真正实现以客户接触点为基点,全面打通业务系统流程。毕竟处在客户的角度,他们并不关心运营商的后台究竟有多少系统在运转,只希望能够解决切身问题。
因此,我们需要以每一个客户接触点为基准,通过BI算出客户消费模型,与CRM产品库的产品做匹配,与电子商务网站信息联动,统一底层数据接口,实现整个业务流程的精细化运营。
更值得注意的是,由于运营商部门设置庞大且复杂,这也使得市场营销活动成为一个多部门跨域合作的项目,因此如何缩短市场营销部门和技术支撑部门的响应时间,强化前后台之间的沟通交流,也将成为BI能否真正体现价值的关键所在。
各级BI系统区别定位
记者:据了解,一些省级运营商的BI系统仅限于本地网存在,请问这与运营商集团层面的BI统一规划是否存在冲突,集团和省公司的BI系统在功能上是如何区分的?
彭怀湘:不会造成影响,因为集团层面和省公司的BI系统在业务范畴、关注层面都用明显的定位差别,两套系统间应该是互补关系。
集团层面BI系统主要负责管理和监控,各省BI系统主要负责市场和经营,而地市公司则借用省公司的数据仓库,远程访问省公司的BI系统,实现市场经营分析活动;同时省公司也将自身BI系统数据定期上传集团公司,以便集团对各省业务数据进行指标考核。
林鹏:全国集中的BI系统着眼的是面向全国的大事。而各地的BI系统,着眼研究各地的特殊问题。我们不能指望用一个数据挖掘的建模就能满足全国各地的要求。各地的情况千差万别,应分享经验、分别建模、独立分析。
重视数据整合和质量提升
记者:BI系统在运营商方面已经建立了完备的演进脉络,请问现阶段运营商的投入和建设重点在哪里,将着重解决实际应用中的哪些难点问题?
冀振明:BI系统建设是一个不断完善的过程,运营商会针对BI系统的不同阶段制定不同的业务目标,以中国移动为例,在2011年,其经分系统将着重精细化迈进,细分客户群,深度运营渠道。
由于运营商每天都在生成数以百万计的数据信息,后台系统又由于种种历史原因导致整体架构并不统一,存在严重的数据割裂现象,这些无疑将加剧运营商BI系统建设难度。作为BI系统的基础,解决数据一致性问题也将成为运营商一项长期工作。厂商一方面要重点关注在如何实现数据整合和质量提升等方面;另一方面,灵活构建切实满足业务人员营销与服务的BI应用。
林鹏:构建系统体系首先要着眼于数据的系统性和全面性,以支撑相应的经营决策。省公司和地市公司的重点会有所不同,地市公司可以在省公司的数据支持下,建立专业系统,对数据进行主题化、深入的分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29