京公网安备 11010802034615号
经营许可证编号:京B2-20210330
采用大数据技术占领竞争高地
在Talend Connect大会上,一名IT业内分析专家指出,企业若不抓住大数据带来的机会,将很有可能在同行中遭到淘汰。
Jeff Kelly是Wikibon.org的首席研究员,也是SiliconANGLE的编辑。他说,诸如Hadoop和MapReduce这样的大数据技术才刚刚起步;很多人由于技术有限或观念陈旧,仍然将它们拒之门外。然而,在不久的将来,当软件使用门槛变低大量企业开始采用的时候,这些今天已经采用了大数据技术的企业将再次占领高地。到那时,他们会具备更丰富的信息来进行决策,也会比其他企业赚到更多的钱。
作为曾就职于TechTarget的记者,Kelly说:“我们已经研究大数据两三年了,得到的结论就是,大数据是目前业内赢取竞争优势最有力的武器。当我们得出这个结论时,我们意识到了它的轰动性。事实的确如此,我们实在想不出有哪一个行业不会受到大数据的影响。”
“大数据”这个词今天常在对机器生成的海量结构化与非结构化信息、社交媒体网站和移动设备的形容中用到。除此之外,它也用来形容可从信息中提取出有用商业洞察的存储、管理和分析技术。比较熟知的大数据管理技术包括:Apache Hadoop分布式文件系统、MapReduce、Hive、Pig和Mahout.
数据指向性的优势
在Talend Connect大会上大谈决策制定流程中业务数据指向性问题的不止Kelly一人,Tony
Fraser也是其中之一。Fraser是Ogilvy &
Mather(一家大型公关广告公司)旗下营销公司Neo@Ogilvy的创立人之一,也是技术合伙人。
Fraser说:“我们做的是数字广告。只要你能想到的领域,我们都有涉及。”
Fraser在发言中举出实例,说明了数据指向性决策为他们公司成功带来的帮助。其一是,巴黎酒店和拉斯维加斯赌场与Neo@Ogilvy合作,吸引更多的顾客。Neo@Ogilvy首先通过社交媒体和旅游网站针收集顾客对巴黎酒店的正面评价,发现大多数都与Bellagio酒店喷泉的景色和街道对面的赌场相关。根据这个信息,公司团队投放了一期电子广告,内容为喷泉旁的巴黎酒店。
Fraser说:“广告一投放出去,酒店的预定人数激增。”
大数据运用的障碍
Kelly称,大数据管理技术的概念早已传播到大街小巷,但为什么真正使用它的企业却很少呢?主要有两个原因。
第一,Hadoop与其他大数据软件的使用极其困难,而正确使用技能的培训尚未出台。目前,企业只有高薪聘请相关专业的博士才能对大数据方程式进行分析。
Kelly说:“一个Oracle DBA不一定具备管理、部署与监控Hadoop的技能。比如,一个分析层面的数据工程师需要编写MapReduce,而这样的工作可与SQL查询的编写完全不同。”
第二,目前大部分企业还缺少实施大数据的概念和计划。
现今的许多大型企业都已习惯于通过数据仓库与BI报表技术来获取业务信息。然而,Kelly认为,BI或数据仓库模型是通过数据分析对过去进行评估,而大数据技术是通过数据分析对未来进行预测。
他说:“对于这些企业来说,大数据运用需要一种观念上的转变;你需要信任数据并跟着它指的方向前进。大数据的意义就在于向前看、做出预测,然后行动。”
大数据管理的普及
Kelly认为,大数据管理和分析与其他新兴技术无异,最终都会普及,或者说会变得大众化。但是,这也需要一个过程。
由于大数据技术的复杂度对很多刚刚接触的企业都是不小的挑战,所以这些新的应用工具和软件技术需要被简化。Talend、Hortonworks和Cloudera等公司目前都在简化大数据技术的难度。Kelly说,大数据技术还需要很多革新,以让用户更简单地进行部署和管理、对Hadoop集群进行防护并在流程与数据源之间创建集成。
“现在你想成为一个顶级数据程序员,就必须具备编写MapReduce、SAS或其他语言程序的复杂技术。所以,我们需要研发出可以剔除部分专业性的工具;这样一来,即使你没有博士学位,也可以编写大数据程序了。”
大数据的普及少不了对用户的大量技能培训,内容包括大数据架构、Hadoop部署管理、数据集成与MapReduce的编程等。
Kelly说:“我们需要全面解决存在问题。一方面简化工具与技术;另一方面加强人员的培训,使DBA和业务分析师能够胜任‘大数据时代’的工作。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27