
造车新势力渐入佳境 大数据驱动下玩转汽车新零售
近年来,随着互联网、物联网、算法、分析引擎等技术的进步,能够提供新型大数据服务的公司逐渐涌现。相较传统调研,汽车行业在大数据领域的调研数据样本量更大,更丰富,效率更高。
汽车大数据极大程度改变了车企传统的营销方式,推动车企营销变革。以往的营销主要通过品牌传播和群体分析;在大数据时代,营销变得更加精准、有效,甚至直接形成闭环,让交易达成变成了现实,极大程度地提高了营销的效率。同时,大数据技术连接更多维度和层次的数据、场景、人群,实现了线上和线下渠道的紧密结合,将用户画像分析、市场状况分析、场景分析、营销产品内容分析等融入多屏全触点的智能营销,洞悉用户需求,利用个性化推荐技术,实现了真正意义上的个性化精准营销和智能营销。
大数据引航新零售
数据显示,2017年全球汽车销量首次突破9000万辆,中国汽车产销量连续第9年蝉联全球第一。据专业机构预测,中国汽车产销量的峰值将会达到4000万辆,甚至是5000万辆。这意味着,我国汽车市场尤其是乘用车市场规模仍有非常大的增长空间。
随着中国汽车销量持续增长,新车销售增长的坡峰已经从二线城市过渡到三、四、五线城市,尤其是四、五线城市的购车需求正在迅速释放。同时,汽车流通渠道正面临着中小城市用户群体与年轻用户群体崛起的新格局,而4S店所采用的超重资产模式目前难以做到深度下沉。
在商品越来越个性化、商品种类越来越多的情况下,零售企业想要突出重围,像以前一样靠传统、单向、灌输式的营销方式难以打破瓶颈。而依托互联网和大数据,能帮零售经营者精准地筛选目标群体,洞察消费者的真实需求,让营销更直击人心。同时结合线上社群,让品牌得到裂变式的传播。
在消费升级、互联网技术与大数据应用的驱动下,零售业在2016年出现爆发性变革,进入“新零售”时代。汽车市场原本就是一个零售市场,汽车行业未来的发展也必然立足于新零售,利用一系列技术的变革,改善用户体验,加速资源整合,获得长足的发展。
业内人士认为,新零售实现的基础在于新技术的应用,大数据和云计算共同推动了零售行业市场效率的提升,加快了零售行业自身的创新步伐。同时,新零售还缩短了汽车制造业生产效率的提升及生产工艺的创新和改进。因此,新技术与其他产业相融合,有效提升其他行业的创新行为,从而推动市场整体创新能力的提升。
借助新型汽车大数据服务,车企不仅可以拓宽汽车行业调研数据的广度和深度,从大数据中了解汽车行业市场构成、细分市场特征、消费者需求和竞争者状况等众多因素,挖掘市场需求、竞争情报,提出更好的解决问题的方案和建议,保证企业品牌的个性化,提高企业品牌的行业接受度,还能够基于大数据数学模型对未来市场进行精准预测。
重塑业界新常态
“汽车+互联网”模式在行业智能化、电动化的大背景下,正逐渐成为一种新常态。
近日,国内领先的智能电动车品牌爱驰汽车与汽车及保险行业大数据运营商评驾科技正式签署全面战略合作协议。双方将在汽车研发生产、智能网联服务、大数据精准营销、保险科技和新零售创新等方面展开全面战略合作,为爱驰汽车用户带来高品质用车体验和服务。
新任爱驰汽车联席总裁徐骏表示,爱驰汽车以深厚造车经验为基础,高度重视大数据和人工智能技术的应用,此次与评驾科技的全面战略合作将以大数据为载体、以人工智能为驱动力,深入应用“互联网+”思维,打造纯电的智能网联出行生态系统,加速爱驰汽车智能技术落地。
在智能联网和新零售时代,所有的生产和线上线下销售都将以数字化为基础,以用户为核心,以交易为内核导入多维度创新。评驾科技的用户行为大数据平台以人工智能算法为核心,通过智能车载硬件及智能手机实时获取线上线下数据,并通过大数据建模分析,还原用户的用车场景和生活场景,对用户行为建立深度感知,挖掘用户的需求特征和偏好特征,将有利于帮助爱驰汽车建立目标用户群体和精准需求信息数据库,实现真正的市场和用户洞察,优化新车生产研发,为用户带来全汽车生命周期的智能网联体验。
在产品研发环节,爱驰汽车将以大数据分析作为指导,缩短新产品的研发周期,推动产品创新;在销售环节,通过对用户行为的精准画像,挖掘用户潜在需求,形成智能化、个性化的营销活动策略;在车辆使用环节,借助人工智能技术准确把握车辆位置、车辆故障等信息,及时提供满足用户需求的增值服务和产品。
在此基础上,评驾科技还将帮助爱驰汽车与保险公司更紧密结合,将UBI模型和保险服务迁移到前装车机平台和车主服务平台,通过多设备的场景化应用,将保险服务渗透到用户的全旅程服务体验中,打造安全无忧的拥车生活。
业内人士认为,造车新势力加速布局智能化的过程,不但可以帮助汽车行业的整体进化,还可以重构汽车产业价值链;而对传统车企来说,则可以获得新技术、新思路。同时,通过合作还可以降低双方各自成本、提高效率。
可以预见的是,爱驰汽车和评驾科技的合作将有效打通线上线下数据,汽车流通各个环节数据得以有效融合,大数据分析将有效降低产品交易的成本,同时也可全面分析产品的流通情况,为商业管理提供了有效的数据基础。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18SPSS 赋值后数据不显示?原因排查与解决指南 在 SPSS( Statistical Package for the Social Sciences)数据分析过程中,变量 ...
2025-07-18在 DBeaver 中利用 MySQL 实现表数据同步操作指南 在数据库管理工作中,将一张表的数据同步到另一张表是常见需求,这有助于 ...
2025-07-18数据分析师的技能图谱:从数据到价值的桥梁 在数据驱动决策的时代,数据分析师如同 “数据翻译官”,将冰冷的数字转化为清晰的 ...
2025-07-17Pandas 写入指定行数据:数据精细化管理的核心技能 在数据处理的日常工作中,我们常常需要面对这样的场景:在庞大的数据集里精 ...
2025-07-17解码 CDA:数据时代的通行证 在数字化浪潮席卷全球的今天,当企业决策者盯着屏幕上跳动的数据曲线寻找增长密码,当科研人员在 ...
2025-07-17CDA 精益业务数据分析:数据驱动业务增长的实战方法论 在企业数字化转型的浪潮中,“数据分析” 已从 “加分项” 成为 “必修课 ...
2025-07-16MySQL 中 ADD KEY 与 ADD INDEX 详解:用法、差异与优化实践 在 MySQL 数据库表结构设计中,索引是提升查询性能的核心手段。无论 ...
2025-07-16解析 MySQL Update 语句中 “query end” 状态:含义、成因与优化指南 在 MySQL 数据库的日常运维与开发中,开发者和 DBA 常会 ...
2025-07-16如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14