京公网安备 11010802034615号
经营许可证编号:京B2-20210330
造车新势力渐入佳境 大数据驱动下玩转汽车新零售
近年来,随着互联网、物联网、算法、分析引擎等技术的进步,能够提供新型大数据服务的公司逐渐涌现。相较传统调研,汽车行业在大数据领域的调研数据样本量更大,更丰富,效率更高。
汽车大数据极大程度改变了车企传统的营销方式,推动车企营销变革。以往的营销主要通过品牌传播和群体分析;在大数据时代,营销变得更加精准、有效,甚至直接形成闭环,让交易达成变成了现实,极大程度地提高了营销的效率。同时,大数据技术连接更多维度和层次的数据、场景、人群,实现了线上和线下渠道的紧密结合,将用户画像分析、市场状况分析、场景分析、营销产品内容分析等融入多屏全触点的智能营销,洞悉用户需求,利用个性化推荐技术,实现了真正意义上的个性化精准营销和智能营销。
大数据引航新零售
数据显示,2017年全球汽车销量首次突破9000万辆,中国汽车产销量连续第9年蝉联全球第一。据专业机构预测,中国汽车产销量的峰值将会达到4000万辆,甚至是5000万辆。这意味着,我国汽车市场尤其是乘用车市场规模仍有非常大的增长空间。
随着中国汽车销量持续增长,新车销售增长的坡峰已经从二线城市过渡到三、四、五线城市,尤其是四、五线城市的购车需求正在迅速释放。同时,汽车流通渠道正面临着中小城市用户群体与年轻用户群体崛起的新格局,而4S店所采用的超重资产模式目前难以做到深度下沉。
在商品越来越个性化、商品种类越来越多的情况下,零售企业想要突出重围,像以前一样靠传统、单向、灌输式的营销方式难以打破瓶颈。而依托互联网和大数据,能帮零售经营者精准地筛选目标群体,洞察消费者的真实需求,让营销更直击人心。同时结合线上社群,让品牌得到裂变式的传播。
在消费升级、互联网技术与大数据应用的驱动下,零售业在2016年出现爆发性变革,进入“新零售”时代。汽车市场原本就是一个零售市场,汽车行业未来的发展也必然立足于新零售,利用一系列技术的变革,改善用户体验,加速资源整合,获得长足的发展。
业内人士认为,新零售实现的基础在于新技术的应用,大数据和云计算共同推动了零售行业市场效率的提升,加快了零售行业自身的创新步伐。同时,新零售还缩短了汽车制造业生产效率的提升及生产工艺的创新和改进。因此,新技术与其他产业相融合,有效提升其他行业的创新行为,从而推动市场整体创新能力的提升。
借助新型汽车大数据服务,车企不仅可以拓宽汽车行业调研数据的广度和深度,从大数据中了解汽车行业市场构成、细分市场特征、消费者需求和竞争者状况等众多因素,挖掘市场需求、竞争情报,提出更好的解决问题的方案和建议,保证企业品牌的个性化,提高企业品牌的行业接受度,还能够基于大数据数学模型对未来市场进行精准预测。
重塑业界新常态
“汽车+互联网”模式在行业智能化、电动化的大背景下,正逐渐成为一种新常态。
近日,国内领先的智能电动车品牌爱驰汽车与汽车及保险行业大数据运营商评驾科技正式签署全面战略合作协议。双方将在汽车研发生产、智能网联服务、大数据精准营销、保险科技和新零售创新等方面展开全面战略合作,为爱驰汽车用户带来高品质用车体验和服务。
新任爱驰汽车联席总裁徐骏表示,爱驰汽车以深厚造车经验为基础,高度重视大数据和人工智能技术的应用,此次与评驾科技的全面战略合作将以大数据为载体、以人工智能为驱动力,深入应用“互联网+”思维,打造纯电的智能网联出行生态系统,加速爱驰汽车智能技术落地。
在智能联网和新零售时代,所有的生产和线上线下销售都将以数字化为基础,以用户为核心,以交易为内核导入多维度创新。评驾科技的用户行为大数据平台以人工智能算法为核心,通过智能车载硬件及智能手机实时获取线上线下数据,并通过大数据建模分析,还原用户的用车场景和生活场景,对用户行为建立深度感知,挖掘用户的需求特征和偏好特征,将有利于帮助爱驰汽车建立目标用户群体和精准需求信息数据库,实现真正的市场和用户洞察,优化新车生产研发,为用户带来全汽车生命周期的智能网联体验。
在产品研发环节,爱驰汽车将以大数据分析作为指导,缩短新产品的研发周期,推动产品创新;在销售环节,通过对用户行为的精准画像,挖掘用户潜在需求,形成智能化、个性化的营销活动策略;在车辆使用环节,借助人工智能技术准确把握车辆位置、车辆故障等信息,及时提供满足用户需求的增值服务和产品。
在此基础上,评驾科技还将帮助爱驰汽车与保险公司更紧密结合,将UBI模型和保险服务迁移到前装车机平台和车主服务平台,通过多设备的场景化应用,将保险服务渗透到用户的全旅程服务体验中,打造安全无忧的拥车生活。
业内人士认为,造车新势力加速布局智能化的过程,不但可以帮助汽车行业的整体进化,还可以重构汽车产业价值链;而对传统车企来说,则可以获得新技术、新思路。同时,通过合作还可以降低双方各自成本、提高效率。
可以预见的是,爱驰汽车和评驾科技的合作将有效打通线上线下数据,汽车流通各个环节数据得以有效融合,大数据分析将有效降低产品交易的成本,同时也可全面分析产品的流通情况,为商业管理提供了有效的数据基础。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27