京公网安备 11010802034615号
经营许可证编号:京B2-20210330
如今,大数据分析到底有多重要?McKinsey Global Institute(位于旧金山,是总部位于纽约的麦肯锡公司的研究机构)的高级合伙人Michael Chui(去年发布的麦肯锡大数据价值研究报告的作者之一)认为,在数据分析方面的能力将决定企业市场份额的得失。而且根据长久以来观察的结果,强者将会逾强(Whoever has will be given more,出自圣经之马太福音)。
“很快,我们就会看到那些领先的公司从中得到收益。”Chui说。海量数据的收集和分析已经在医疗健康领域得到了实际运用,麦肯锡在报告中预计该行业将从大数据中获得多达3000亿美元的收益,其中2000亿来自于相关成本的削减。
James Noga是Partners HealthCare System(位于波士顿的一家非营利性医疗机构)的CIO,他认为医疗行业已经认识到大数据分析能够极大地提升人类健康水平(即便不是最重要的因素)。“在我们这,即使只是基于一个很小的数据集,我们也能够通过分析来发现诸如Vioxx(一种已被发现有重大问题的药物)之类的问题”.
Noga认为尽管医院在大数据分析方面还不够成熟,但是情况正在一天天发生着变化。大量的数据正不断从医疗第一线汇集起来并经过整理和分析。Noga预计,随着人类基因组序列分析的成本降低,总有一天会给公众带来重大的福音。“无数的人正等着这些数据来进行分析利用。”Noga补充到。
数据蕴藏的新价值
Chui和Noga都参加了在马萨诸塞Cambridge举行的MIT斯隆CIO论坛,并作为数据专家阐述了大数据分析的诱人前景和面临的挑战。论坛由纽约时报的技术编辑Quentin
Hardy主持,还包括The Corporate Executive Board
Co.(CEB,位于华盛顿特区的一家咨询公司)的高级总监Shvetank Shah和Babson
College(位于马萨诸塞Wellesley)的管理和信息技术教授Tom Davenport.
数据分析的用武之地绝不仅限于医疗健康领域(已经建立了一套规范的科学方法)或者消费品行业(已经拥有大量的用户数据)。比如,基于物流行业供应链而收集的海量数据也已经开始被用于对经济趋势的分析。[page]
Hardy最近遇到了一个物流公司,其客户占了世界经济总量的3%到5%.该公司所拥有的数据对未来具有重要的指向作用,比如圣诞季的零售业状况和阿拉伯之春后约旦的走向。“我告诉他们,这些信息都可以在华尔街进行交易。”
Davenport是数据分析方面的高产作者,他最近专注在工业界并且预计大数据分析正给振兴美国制造业带来机遇。“通过数据分析,你可以及时发现问题并优化业务。”
流程和产品的数字化为企业开辟了另外一个天地。“我们可以毫无束缚地开始各种创新实践。”Chui说。
CIO在大数据分析中的角色
那么,在大数据分析中CIO应该承担什么样的角色呢?包括Partners
Healthcare的Noga在内,至少有两位与会者强烈建议业务端来领衔分析工作。“我们有部分的责任,但分析是实实在在的研发工作,IT只是提供支撑。我们负责基础架构的事情
–
比如什么类型的计算适合放在公有云、私有云或者完全掌控的数据中心里。”Noga解释说:“就我自身来说需要理解分析技术,但是不应该成为责任人。分析事关企业战略,属于研发类型,应该由具备专业素养的人来担当数据科学家(data
scientist)。”
这种看法的原因可以从一次相关的讨论结果(大数据和分析法学的挑战:数据聚积和偏好)中看出端倪:大数据时代的成功在于发现能够提升业务决策的模式。而这个过程中需要扎实的数学和技术功底,以及对业务的深刻认识。
Noga的看法得到了Davenport的赞同,后者以通用电子为例来加以说明。通用电子计划在投资超过10亿美元的全球软件中心(位于旧金山)招聘800位数据科学家。这些科学家将受聘于公司的研发部门。另外,惠普公司也在其战略规划团队中增加了数据科学家。“对此,我们给予完全正面的预期。”Davenport表示。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28