
如今,大数据分析到底有多重要?McKinsey Global Institute(位于旧金山,是总部位于纽约的麦肯锡公司的研究机构)的高级合伙人Michael Chui(去年发布的麦肯锡大数据价值研究报告的作者之一)认为,在数据分析方面的能力将决定企业市场份额的得失。而且根据长久以来观察的结果,强者将会逾强(Whoever has will be given more,出自圣经之马太福音)。
“很快,我们就会看到那些领先的公司从中得到收益。”Chui说。海量数据的收集和分析已经在医疗健康领域得到了实际运用,麦肯锡在报告中预计该行业将从大数据中获得多达3000亿美元的收益,其中2000亿来自于相关成本的削减。
James Noga是Partners HealthCare System(位于波士顿的一家非营利性医疗机构)的CIO,他认为医疗行业已经认识到大数据分析能够极大地提升人类健康水平(即便不是最重要的因素)。“在我们这,即使只是基于一个很小的数据集,我们也能够通过分析来发现诸如Vioxx(一种已被发现有重大问题的药物)之类的问题”.
Noga认为尽管医院在大数据分析方面还不够成熟,但是情况正在一天天发生着变化。大量的数据正不断从医疗第一线汇集起来并经过整理和分析。Noga预计,随着人类基因组序列分析的成本降低,总有一天会给公众带来重大的福音。“无数的人正等着这些数据来进行分析利用。”Noga补充到。
数据蕴藏的新价值
Chui和Noga都参加了在马萨诸塞Cambridge举行的MIT斯隆CIO论坛,并作为数据专家阐述了大数据分析的诱人前景和面临的挑战。论坛由纽约时报的技术编辑Quentin
Hardy主持,还包括The Corporate Executive Board
Co.(CEB,位于华盛顿特区的一家咨询公司)的高级总监Shvetank Shah和Babson
College(位于马萨诸塞Wellesley)的管理和信息技术教授Tom Davenport.
数据分析的用武之地绝不仅限于医疗健康领域(已经建立了一套规范的科学方法)或者消费品行业(已经拥有大量的用户数据)。比如,基于物流行业供应链而收集的海量数据也已经开始被用于对经济趋势的分析。[page]
Hardy最近遇到了一个物流公司,其客户占了世界经济总量的3%到5%.该公司所拥有的数据对未来具有重要的指向作用,比如圣诞季的零售业状况和阿拉伯之春后约旦的走向。“我告诉他们,这些信息都可以在华尔街进行交易。”
Davenport是数据分析方面的高产作者,他最近专注在工业界并且预计大数据分析正给振兴美国制造业带来机遇。“通过数据分析,你可以及时发现问题并优化业务。”
流程和产品的数字化为企业开辟了另外一个天地。“我们可以毫无束缚地开始各种创新实践。”Chui说。
CIO在大数据分析中的角色
那么,在大数据分析中CIO应该承担什么样的角色呢?包括Partners
Healthcare的Noga在内,至少有两位与会者强烈建议业务端来领衔分析工作。“我们有部分的责任,但分析是实实在在的研发工作,IT只是提供支撑。我们负责基础架构的事情
–
比如什么类型的计算适合放在公有云、私有云或者完全掌控的数据中心里。”Noga解释说:“就我自身来说需要理解分析技术,但是不应该成为责任人。分析事关企业战略,属于研发类型,应该由具备专业素养的人来担当数据科学家(data
scientist)。”
这种看法的原因可以从一次相关的讨论结果(大数据和分析法学的挑战:数据聚积和偏好)中看出端倪:大数据时代的成功在于发现能够提升业务决策的模式。而这个过程中需要扎实的数学和技术功底,以及对业务的深刻认识。
Noga的看法得到了Davenport的赞同,后者以通用电子为例来加以说明。通用电子计划在投资超过10亿美元的全球软件中心(位于旧金山)招聘800位数据科学家。这些科学家将受聘于公司的研发部门。另外,惠普公司也在其战略规划团队中增加了数据科学家。“对此,我们给予完全正面的预期。”Davenport表示。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04