
传统零售与O2O零售之间差着一个“大数据”
O2O火了,也让更多人将目光聚焦到了实体零售,国内电商的强大有目共睹,但近期的“关店潮”证明O2O的另一只腿依然是“瘸”的。
错过电商化的时代,O2O时代很多实体零售商都不甘就此消亡,大企业纷纷开始自救,苏宁2011年就开始发力线上,近期更是联手阿里,万达拉来百度苏宁做非凡电商,沃尔玛各种折腾最终将1号店收归囊下,朝阳大悦城建立“悦界”从Shopping Center向Lifestyle Center快速转型……大公司自救,中小实体零售靠平台“拥抱互联网”,于是饿了么、美团外卖聚集了一大批餐饮店铺,唯品会、聚美优品是服饰类零售商的聚集地……
与其艳羡电商覆盖面大,不如保有自己本色
全民“电商化”带来了什么呢?移动支付成了“抢手饽饽”,前有阿里布局支付宝,后有微信的钱包,百度、京东也各有自己的移动钱包,大众点评的张涛也表示转型做移动支付……大家纷纷为O2O铺路是为实体零售商创造了复兴的机会,但扎堆做移动支付,并不能满足实体零售扭转“O2O”劣势的愿望。
实体零售与电商最大差别之一在于:电商覆盖面积往往远广于实体零售。一家中小型超市的覆盖面积是2500㎡,基本是附近居民步行10分钟或5分钟自驾的距离,理论上来说淘宝的小店铺的覆盖面积也远大于国内任何一家大型商场。实体零售既然不能做大,与其临渊羡鱼,不如专心经营自己那一亩三分地,做“精”用“小而美”吸引用户。
像现在非常火的黄太吉、雕爷牛腩,以及西少爷,是单以味道取胜吗?黄太吉的成功,营销的因素远高于商品本身价值,不仅利用微信微博与粉丝大量互动,同时还针对三里屯特定的白领消费场景打造自身服务特色,一家满足了用户所有需求的店铺,顾客又怎会去另一家店“探险”?
大数据让实体零售“小而美”不是梦
如何做到“小而美”呢?目前最便捷的方法就是大数据。
马云在去年互联网大会上曾说:“上世纪做企业一定要做好IT(Information Technology),这个世纪做企业要做好DT(Data Technology)。“DT就是数据技术,对实体零售而言,大数据就是粉丝,就是精准营销。
“客来乐”支付终端近期推出的线下收银台整体解决2.0方案也暗合大数据时代的精准营销,这套方案的收银终端有两个显示屏的体态装扫码器,与人体呈90度的屏幕显示二维码,以及优惠券和优惠活动,与人体称呈60度的屏幕用来扫码,主扫与被扫可以在一个机器上完成,收银员的操作与传统方式无异,避免了收银环节的核对与找零。
简化收银环节是一个优势,最值得实体零售关注的创新是收银打印出的发票上附有店铺的微信公众号二维码,同时使用微信支付,在手机端的支付面会提示顾客是否关注该企业微信公众平台,此举目的是收集用户数据以便最终可以达成精准营销等行为。据客来乐CEO介绍,目前这款产品已接入200多家支付方式,此前曾有店铺25%的进店消费用户选择关注该店铺公众号,这部分用户就成为了该店铺的核心用户,利用微信公众号可以向这些用户推送优惠券、店铺最新活动,最终形成自己的粉丝圈。
日本实体零售遭电商冲击小,秘诀亦在数据收集
为什么电商对日本实体零售影响不大?也是因为大数据的收集。
日本7-11株式会社培训部部长蒲哲介绍到:一是7-11整体销售额的60%来自自主研发,每周推荐的新商品约占100 SKU,行业壁垒较高,其二是因为日本传统零售商的互联网+起步比国内早十年,实体零售商已经习惯用互联网收集用户数据,从而形成精准营销,第三点是不仅对中高龄的用户会推荐产品,针对新生用户,更是与之不断互动,且通过各种方法将年轻用户吸引到店里来,譬如购买市面上的热门游戏,以供到店用户免费下载。7-11也因此越做越大,其地位难以被电商撼动。
各种杂、大、全的网购就像快餐,适于应急但由于“不接地气”所以与用户的感情难以培养,但实体零售却很容易利用大数据了解用户需求从而建立精准营销,当你常去的店,店主记住了你吃饭不喜辣,喝水要温,喜欢靠窗的座位······他已不仅是在满足用户的消费需求,而是在满足用户情感需求,这种顾客又怎会不是“老顾客”呢?
最后,用北大零售业研究中心主任王向阳的对实体零售的一句话结束本文:不是电商太强,而是实体零售太弱。请实体零售快马追上吧,否则,你做不到的,你的竞争者会做到!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18