京公网安备 11010802034615号
经营许可证编号:京B2-20210330
计算广告:大数据变现的成功实践
近两年,大数据技术在越来越多的行业发挥了作用,计算广告是其中最成熟、市场规模最大的行业之一。将用户行为数据转化为可衡量的商业价值,在线广告创造了互联网行业大部分的营收。如何利用手中的大数据获取更大的利益也广告主和广告商所共同关心的问题。
9月19日,“计算力量改变世界”沙龙在北京科技寺举行。资深广告技术专家刘鹏、汽车之家广告算法经理王超、广告家Pro.cn产品经理李雪莱对这一问题进行了解答,就广告行业发展、广告技术和场景化营销进行了分享,并与数十位广告从业者就程序化购买的挑战和机遇进行了探讨。
网络广告高速发展 程序化购买潜力巨大
互联网广告兼具品牌和效果量方面的功能,更是具备传统广告所缺乏的大量投送和效果优化能力。最近几年的数据显示,网络广告的市场规模正在以惊人的速度发展。
2007年-2013年中美网络/电视广告市场规模折线图 (单位:亿美元)
数据来源:《计算广告》刘鹏 王超著
随着需求优化效果效果的进一步加强,普通的竞价广告模式已经不了市场需求的发展,以实时竞价为核心的程序化交易广告应运而生。资深广告技术专家刘鹏在“计算力量改变世界”沙龙上表示,面对千万网民反馈形成的快速变化的数据空间,程序化购买应用了大量信息检索、机器学习等计算分析技术,通过这些计算分析技术组成的计算平台,能实现实时判断消费者当下场景的潜在需求,然后推送基于该需要的广告内容。
基于大数据技术的程序化购买,做到深入挖掘用户需求和痛点,不仅实现千人千面的广告投放,更促使消费者主动选择广告主的解决方案。而这也吸引越来越多的媒体、网络入口也开始不断的将资源与程序化购买平台进行深度结合,以实现效率和效益的最大化。据艾瑞咨询发布的《中国程序化购买行业报告》显示,2015年中国的程序化购买市场规模有望达到100亿元。而从零起步到达到这一规模,仅仅使用了3年的时间。
刘鹏认为,计算分析技术已经开始改变甚至颠覆传统的广告营销方式,但是当前依然只是程序化购买的初期,各种计算技术、分析,还存在着巨大的提升价值,这让程序化购买在未来具有不可估量价值的同时,也对提供程序化购买服务的企业带来了不小的技术实力挑战。
DSP的未来在场景化营销 数据和技术是重要驱动
通过实时竞价的方式,按照定制化的人群标签购买广告,这样的产品即为需求方平台(Demand Slide Platform,DSP)。刘鹏认为目前各家DSP的差异并不明显,未来越深耕的平台机会越大。
对此,广告家Pro.cn产品经理李雪莱很是认同,他说,庞大而实时的大数据信息,结合先进科学的计算分析技术是决定程序化购买能否不断创造价值的关键。
李雪莱进一步表示,拥有数十万WAP、网吧、网站、App、软件以及机场、校园、咖啡厅、酒吧、酒店、餐饮等场景网络的广告家Pro.cn,独有场景媒体和场景化数据,通过不断完善机器学习、多维度信息检索等计算分析技术,能够良好分析出目标用户营销价值,再根据人群、场景、时间段进行多维度匹配,由此为广大企业和品牌广告主提供快速、高效的场景营销,实现将广告与目标受众精确匹配。
据了解,广告家Pron.cn通过AdPro场景营销自助平台(DSP)、DataPro场景数据服务平台(DMP)的完整场景营销服务生态,目前可触达独立用户高达1.5亿,日流量PV更是超过5.5亿。而广告家Pro.cn最新的DSP 3.0也将于10月推出,新产品特有场景轨迹技术,让广告主可以自由选择覆盖场景范围。
程序化购买有两大最为核心的指标,一是庞大而实时的数据库作为支撑,二是先进科学的计算分析技术。随着市场的趋向成熟,计算技术的竞争比重会越来越大。除了基本的机器学习,包括近来兴起的深度学习,信息检索、博弈论,以及强化学习的等诸多计算技术和理论,都会成为提升程序化购买应用范围和竞争力的组成部分。
届时,程序化购买也将开始新的一轮优胜劣汰,并推动市场整体实现从数据到计算技术竞争,再到数据竞争的螺旋式增长。“广告发展驱动力就是数据利用的广度和深度,当数据利用无法满足广告时,就会推动技术和计算的提升。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用Excel透视表进行数据汇总分析时,我们常遇到“需通过两个字段相乘得到关键指标”的场景——比如“单价×数量=金额”“销量 ...
2025-11-14在测试环境搭建、数据验证等场景中,经常需要将UAT(用户验收测试)环境的表数据同步到SIT(系统集成测试)环境,且两者表结构完 ...
2025-11-14在数据驱动的企业中,常有这样的困境:分析师提交的“万字数据报告”被束之高阁,而一张简洁的“复购率趋势图+核心策略标注”却 ...
2025-11-14在实证研究中,层次回归分析是探究“不同变量组对因变量的增量解释力”的核心方法——通过分步骤引入自变量(如先引入人口统计学 ...
2025-11-13在实时数据分析、实时业务监控等场景中,“数据新鲜度”直接决定业务价值——当电商平台需要实时统计秒杀订单量、金融系统需要实 ...
2025-11-13在数据量爆炸式增长的今天,企业对数据分析的需求已从“有没有”升级为“好不好”——不少团队陷入“数据堆砌却无洞察”“分析结 ...
2025-11-13在主成分分析(PCA)、因子分析等降维方法中,“成分得分系数矩阵” 与 “载荷矩阵” 是两个高频出现但极易混淆的核心矩阵 —— ...
2025-11-12大数据早已不是单纯的技术概念,而是渗透各行业的核心生产力。但同样是拥抱大数据,零售企业的推荐系统、制造企业的设备维护、金 ...
2025-11-12在数据驱动的时代,“数据分析” 已成为企业决策的核心支撑,但很多人对其认知仍停留在 “用 Excel 做报表”“写 SQL 查数据” ...
2025-11-12金融统计不是单纯的 “数据计算”,而是贯穿金融业务全流程的 “风险量化工具”—— 从信贷审批中的客户风险评估,到投资组合的 ...
2025-11-11这个问题很有实战价值,mtcars 数据集是多元线性回归的经典案例,通过它能清晰展现 “多变量影响分析” 的核心逻辑。核心结论是 ...
2025-11-11在数据驱动成为企业核心竞争力的今天,“不知道要什么数据”“分析结果用不上” 是企业的普遍困境 —— 业务部门说 “要提升销量 ...
2025-11-11在大模型(如 Transformer、CNN、多层感知机)的结构设计中,“每层神经元个数” 是决定模型性能与效率的关键参数 —— 个数过少 ...
2025-11-10形成购买决策的四个核心推动力的是:内在需求驱动、产品价值感知、社会环境影响、场景便捷性—— 它们从 “为什么买”“值得买吗 ...
2025-11-10在数字经济时代,“数字化转型” 已从企业的 “可选动作” 变为 “生存必需”。然而,多数企业的转型仍停留在 “上线系统、收集 ...
2025-11-10在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06