
富人发正品,穷人发A货,大数据售假是个什么鬼
前段时间曝光的一系列杀熟事件似乎给大数据头顶压上不轻的一座大山。接踵而来的讽刺段子堪比现在刷屏朋友圈的菊言菊语。
雷锋网编辑在“如何看待大数据杀熟”的知乎问题下,却看到了大数据的另一波骚操作——售假。
知友逻格斯写的一段关于大数据售假的内容获得了四百个赞,内容节选如下:
大数据杀熟算什么,你知道「大数据售假」吗?
某平台代购化妆品,对于 Dior、阿玛尼这些很贵的化妆品,会根据其掌握的买家的收入、消费状况进行细分:
A、如果系统判断你是个富人,平常一直用这个化妆品,就会给你发正品;
B、如果系统判断你是个穷人,买不起专柜里的化妆品,就会给你发 A 货,反正以你的消费水平你也没买过正品,更不知道什么是 A 货了。
更厉害的是,他们还「7 天无理由退货」,只要你敢申请他们就敢退。
那么退货率是多少呢?
2% 左右罢了。
这个场面是皆大欢喜的:
富人 A:23333 买到了便宜的粉底好开森。
穷人 B:23333 我也能用得起富人的粉底液了好开森。
穷人 C:诶,这个粉底液我用了起痘痘了,会不会是假货啊?
平台:小姐每个人的肤质不一样的,如果您不满意我们支持 7 天无理由退货。
穷人 C:啊?化妆品也还可以退货?好开森。
这样的场景无处不在,这一次的「杀熟」无非是击中了某些人脆弱的一面:我把你当兄弟,你居然想……?
抱歉,资本是不讲情义的,正如马克思所说的,如有 50% 的利润,它就铤而走险;为了 100% 的利润,它就敢践踏一切人间法律;有 300% 的利润,它就敢犯任何罪行,甚至绞首的危险。
什么什么,商家开始用大数据分析你的贫富状况并根据结果选择发A货还是真货了?前两天刚从某平台买了一堆化妆品的编辑感觉脸上一紧……
大数据为您一键细分,贴心服务
如果数据分析中心工作时候会说话,它可能的状态是:
哦上帝,看看这位女士前段时间都买了什么,XX、XX……好的相信我,她想要买的这瓶XX一定是她最近甚至是史上买过最贵的护肤品了,即使给她一瓶A货她也会用的很开心。
Amazing!这位女士一星期买了几万的美妆护肤品,我强烈建议给她划分至有钱人梯队,优先发货,从优发货。
……
当然以上情形只是想象,现实中大数据售假是怎么操作的?
邦盛科技副总经理孙斌杰告诉雷锋网,从理论上说,大数据售假主要利用的是数据爬取、采集和建模分析技术,通过把用户的职业、家庭收入、消费状况等各类数据,爬取和采集过来后,经过深度的清洗、加工后,通过关联分析等技术,建立相应的模型。简单说,就是对这个用户的经济收入、进行购买习惯和消费习惯等方面做一个用户画像,然后用设定的规则模型去套这个画像,画像跟哪类规则模型匹配,就采取类似的发货策略。
钱塘号曾概括过收到A货的人可能需要的特殊品质。比如购买能力,你在网上买件商品,订单提交后,系统会自动查询分析你在全平台的购物数据,如果你在同类产品消费倾向绝对大部分是低价位品牌,系统就判定你没用过高价位大牌真品,所以后台经分析后将你备注为低风险客户,给你发的货就容易是高仿货;
又比如收货习惯,其中退货少的人更容易买到假货,你的消费记录、购买记录、客单价记录将作为发货参考数据被系统识别。很多人有类似经历,买来的产品有小问题又不影响使用,怎么办?退货嫌麻烦,只有忍了。你如果真想退货,电商常常解释是因为发货前没有检查货品!
这显然是假话,因为每一批次的瑕疵品都有记录,之所以发给你,是因为你的综合退货率偏低而已,系统会自动认定你“好说话”、“能将就”,一有假货就优先“照顾”你。如果你收到货连看都不看,假货不给你给谁呢!
甚至收货地址也可能促使你买到假货。这并不是说二三四线城市就一定发假货。如果能识别收货手机与收货地址所在城市有没有产品专卖店。如果没有,你也没买过同类产品,系统会“放心”分配高仿货给你;如果有专卖店,系统会查询你是否买过同品牌产品。有消息透露,按此套路售卖高仿货,退货率还不到5%。
大数据真的售假了?还是过分解读
看完上述的售假事件,围观群众瑟瑟发抖,纷纷表示自己从没给过差评、没退过货、甚至买东西时都不会跟店主聊上一句。一但系统认为自己是个“没脾气的老好人”是不是就悲剧了?对方会故意给次品,故意把排后发货。
“所以以后我要多多退货、多多投诉。一但发现我被杀熟了,我就故意购物、故意退货、故意投诉、故意去举报。”某网友这么说道。
众多网友担心的情况会出现吗?
在孙斌杰看来,尽管从理论上分析大数据售假事件是可行的,但这种平台恶意行为并不常见。
因为这需要收集用户的多维度数据,同时进行相关的计算分析后,建立相应的规则模型。每次用户购买时,要启动相关的数据匹配后进行计算,查看是否与相应的规则模型匹配,才能确定发假货还是真货。、
这听起来容易,做起来却没那么容易,需要数据技术等支撑。一般商家没有能力也没有预算投入大数据分析。但随着互联网发展,不排除这类情况会增加。
“从某种层面上讲,大数据售假真实存在,通过大数据的能力把买卖双方串联起来,双方各取所需。但正如前面所说,我认为目前各类平台,不至于太多的存在专门投入相关经费整合数据,利用技术卖假的现象,这一说法有点过分解读。”
售假事件并非电商首创,类似事件一直存在。就算卖菜的小贩也会看人报价,只不过大数据可以把感性的“看人外表猜性格”替换成按数据了。
至于大数据售假到底存不存在?
电商那么多,一定有商家正在这样做,也一定有商家没想到可以这样。
而对于消费者,似乎只能更谨慎的网购,保护自己的各种数据不泄露了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25