京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据行业发展趋势分析 市场规模快速发展
随着云时代的来临,大数据也吸引了越来越多的关注。大数据分析常和云计算联系到一起,因为实时的大型数据集分析需要像MapReduce一样的框架来向数十、数百或甚至数千的电脑分配工作。
大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些含有意义的数据进行专业化处理。换言之,如果把大数据比作一种产业,那么这种产业实现盈利的关键,在于提高对数据的“加工能力”,通过“加工”实现数据的“增值”。
据前瞻产业研究院《中国大数据产业发展前景与投资战略规划分析报告》数据显示,2017年我国大数据市场规模已达358亿元,年增速达到47.3%,规模已是2012年的35亿元的10倍。预计2020年,我国大数据市场规模将达到731亿元。
国民经济和社会发展“十三五”规划纲要提出,“实施国家大数据战略”,将大数据提升至国家战略层面,明确要把大数据作为基础性战略资源,全面实施促进大数据发展行动,深化大数据在各行业的创新应用,探索与传统产业协同发展新业态、新模式,加快完善大数据产业链。
中国大数据产业发展前景及趋势:
大数据已成为驱动经济发展的新引擎,大数据应用范围和应用水平将加速我国经济结构调整、深度改变我们的生产生活方式。可以预见,在“十三五”期间:
(1)大数据基础设施建设持续增长:基础设施是大数据产业高速发展的前提和保障。我国加快推进“宽带中国”战略,可加快下一代互联网、4G通信网络、公共无线网络、电子政务网和物联网等网络基础设施的建设。
(2)大数据开放共享进度加快:大数据时代,国家竞争力将部分体现为一国拥有数据的规模、活性以及该国解释、运用数据的能力,而国家数据主权体现了对数据的占用和控制。因此,大数据时代,数据主权成为另一个大国博弈的空间。
(3)政府大数据深入应用:各级政府机关在日常管理中累积了大量的数据,但未对这些数据的价值进行充分挖掘,在未来多种数据的融合过程中,政府应用场景将更加丰富,数据挖掘和分析的结果对管理决策的辅助作用可逐步显现。
(4)大数据相关立法加快:目前,我国暂无关于个人数据信息保护的专门法律,且大数据产业的行业力量、行业组织不够强大,企业自律难以实现,政府的调控和保护能力不够强。未来将通过建立个人信息和隐私保护制度,为公众创造一个良好的信息和隐私安全环境。
(5)大数据与传统产业深度融合:大数据与信息、生物、高端制造、新能源等领域的深度融合和创新应用,将带动农业、制造业、服务业等传统产业转型升级。
未来几年,在广大现有和新兴细分市场中,大数据市场融合技术与服务,正形成迅猛的发展势头,未来几年该市场仍将呈现强劲的增长。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27