
用户行为分析领域成为大数据应用“风口”
大数据已成为刚需,对行业用户的重要性日益突出。根据Gartner数据显示,超过九成以上的企业管理层视数据为战略性资产,超过八成的企业经理认为数据资产并未体现在资产负债表上,而是隐含在无形资产中。掌握数据资产进行智能化决策,是企业获得核心竞争力的基石。
近几年,大数据在各行各业的落地应用不断开花,数据开始发挥越来越大的价值,驱动业务增长。加上大数据较为清晰的盈利模式,也成为资本市场竞逐的焦点。据不完全统计,在4月上旬,大数据领域投融资事件超过10起。
目前,在国内大数据领域较为典型的大数据公司主要有两类,一批是本身具有获取大数据能力的BAT等互联网巨头,另外一批是大数据初创公司,他们依赖于大数据工具,针对市场需求,为市场带来创新方案并推动技术发展。
以初创公司神策数据为例,该公司成立三年内已获得上亿元融资。该公司主要为企业提供以用户行为分析(UBA/UEBA)为核心的可视化数据服务,帮助企业解决了从采集、建模、可视化的问题,构建了数据驱动的闭环。去年,其服务的互联网客户中有108家企业发生了融资,占比 20%。
4月11日,神策数据完成4400万美元C轮融资,该轮融资由华平资本领投,A、B轮投资方跟投,其中包括红杉中国、晨兴资本、DCM资本、线性资本、明势资本等。此前,公司曾获得600万元人民币天使轮融资、400万美元A轮融资及1100万美元B轮融资。
投资人的青睐不仅缘于神策数据近十年积累的大数据分析经验,主要是其核心创始团队均来自于百度大数据。神策数据创始人兼CEO桑文锋表示,神策数据成立三年来,很幸运的走对了每一步。“从百度出来创业并没有跟风SaaS,而是结合中国市场的实际情况,确定了要做私有化部署,来帮助各类型客户将数据资产转化为可推动生产力的数据资本。
事实上,数据资产与数据资本的差距,数据沉淀与数据可持续性挖掘的差距,蕴含着巨大的机会,也为AI的应用提供基石。神策数据创始人兼COO刘耀洲认为,数据与AI变得紧密且融合,数据不再只是扮演“支持单业务、单角色的数据分析需求”的角色,而是围绕客户真实需求,贯穿从客户初次触点、客户培育、价值匹配、客户成功的全流程全接触点的运营流程中,形成从数据积累,到数据分析与应用,最终到实践验证的良性应用闭环。
以泛零售企业为例,随着互联网流量增长的红利消退,“获客”成本已经飙升到难以承受的程度。企业希望通过数据资产的积累和沉淀获取全端的用户行为数据,实现线上和线下的数据打通和融合,还原一个多场景下的用户全貌,提供以顾客为中心的新零售服务。
但是,在这个大数据的落地的过程中会遇到很多的“雷”,背后原因是存在很多的数据孤岛,以及对应的数据口径不一致导致的问题。这就需要大量的工作要集中在数据ETL(Extract,数据从来源端经过抽取;Transform,转换;Load,加载至目的端的过程)和数据整合等基础性工作上。另外,为了AI的应用更加容易些,只有进行数据积累和沉淀,以及可持续性的挖掘数据价值,才能保证数据的完整性和一致性,最终让数据分析的智能预测准确率提升。
神策数据的做法是通过私有化部署,先帮助企业做好数据采集和建模等数据基础工作,再进行数据分析和咨询业务。从而帮助企业获取数据并分析多维度、海量、实时的数据分析,从而驱动决策和驱动产品智能化。
“销售把产品卖给客户,这时的服务其实仅完成了20%。”桑文锋解释道,也就是说,数据不止驱动决策,数据更大的价值在于更早一步的数据驱动产品智能化,即利用个性化推荐、个性化投放广告等真实落地的功能,让产品本身得到大幅度优化。
在这个过程中,神策数据迈向成熟的最重要一步是服务意识的形成。桑文锋表示,大数据之于企业应用远不止产品本身,需要可持续的服务和价值传递。“我们在服务客户时,不同于传统企业软件服务的‘八二模型’,而是坚持‘二八模型’。签单只是完成了20%的工作,后续用户用起来并给客户带来业务价值,才是神策数据的独特所在。”
作为首家迈过 C 轮增长魔咒的神策数据,在产品、服务体系、商业模式的成熟度上已经得到市场初步认可,未来的重点在于将如何实现规模化扩张。
桑文锋认为,创业不应纠结于客户数量,只有强化服务体系,才能实现规模扩张。客户发展应该像“滚雪球”一样越滚越大,低劣的产品与服务必然造成“狗熊掰玉米”般客户流失。
据了解,在神策数据公布的 2018 年产品和业务战略框架中,将继续提升泛零售和金融数据服务,并进一步开发文娱、教育等领域的企业数据支持服务。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28