京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据成为数字经济时代新引擎
4月23日,在首届数字中国建设峰会“数字经济”“大数据”等分论坛上,嘉宾们围绕“构建以数据为关键要素的数字经济”等主题畅所欲言,探讨数字中国建设的路径。
中国工程院院士、中国互联网协会理事长邬贺铨:
大数据驱动制造业转型升级
“大数据与企业的数字化转型密切相关。”邬贺铨说,如今,我们在制造业中应用了大量传感器,尤其是一些企业在设备管理、资源管理、运维管理、故障管理等环节产生了很多数据,这些数据要分析应用起来。
邬贺铨表示,大数据与人工智能、移动互联网、云计算以及物联网等技术协同发展,并将深度融合到实体经济中,成为数字经济时代的新引擎。大数据将驱动制造业转型升级,提升生产效率,改进产品质量,节约资源消耗,保障生产安全,优化销售服务。
浪潮集团董事长孙丕恕:
数据流通是建设数字中国的关键
“未来三年,能与电商一样红火的是大数据交易。”孙丕恕说,数据流通是建设数字中国的关键,要加快推进国家一体化大数据中心建设,加快推动政府数据的共享开放,释放数据价值。
孙丕恕表示,数据是土壤,万物生长在数据之上,数字经济、各种新应用、新态势都基于数据。建设数字中国不仅要发展数字经济,而且要扩展到政务、民生等社会各方面,要以数据为基础,打造智慧政府、智慧城市,提升政府社会治理能力和公共服务水平,让每个人都能享受到数据带来的智慧和便捷。
神州数码控股有限公司董事局主席郭为:
要推动大数据融合共享
“要推动大数据融合共享。”郭为表示,目前,互联网数据只占整个数据的20%,特别有价值的数据多在组织内部,如何把数据挖掘出来是一个很大的难点。今后要打通信息孤岛,实现数据流动,创新数据价值。
大数据生态是什么?郭为认为,其核心要素包括应用场景、算法、数据信息三个方面。其中,应用场景是数据技术支撑应用的根本,是服务对象最直接感知人工智能的环节要素;算法是数据技术支撑应用的核心,包括自然语言处理、知识表现等技术;数据信息是数据技术支撑应用的基础,是实现大数据智能化的必备条件。
科大讯飞股份有限公司轮值总裁陈涛:
数字中国将带来更大获得感
陈涛认为,数字中国包含四个维度:一是数字的个人;二是数字的政府;三是数字的城市;四是数字的中国。在数字化政府方面,希望政府能够把数据进一步打通贯穿,为百姓和企业带来更加高效的服务,同时也可减轻政府部门的工作压力,实现跨部门协同工作,从而使得决策更加高效。
“从个人,到政府,再到城市,最后汇集成为一个数字的中国,相信未来的数字中国能够给广大居民以及企业带来更大的幸福感、获得感。”陈涛说。
维信诺公司总裁张德强:
未来将实现万物可视化
“大数据作为数字经济的关键生产要素,已成为驱动数字经济创新发展的核心动能。”张德强说,未来随着数字经济的发展,将实现万物数据化、万物可视化。
张德强表示,新一轮技术革命具有数字化、智能化、网络化、可视化的特点。信息化时代的技术发展将给产业带来重大机遇,实现人工智能、移动互联等新技术应用中不同场景的搭建,从而促进产业间的高效融合,促进我国数字经济的快速发展。
美团点评集团首席执行官王兴:
用科技创新为实体经济赋能
王兴表示,近年来,随着移动互联网、人工智能、大数据、云计算、物联网等技术的发展,我国数字经济进入了新阶段。在新阶段,我国将拥有更多的创新机会,以及走向世界的机会。
创造经济价值,首先要创造社会价值。要把数字化、网络化、智能化的力量深度融入实体经济中,通过科技创新为其赋能,提升各个行业的效率,助力经济高质量发展,提升人民生活水平。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16