京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据中心网络架构之变
传统的数据中心网络一般根据功能划分为:核心层、汇聚层、接入层三个部分。接入层网络一般包含有存储接入和服务器接入,通过低端网络设备直接连接存储和服务器设备,一般提供100M端口的接入。汇聚层的网络设备一般具有高密度端口,高带宽的特点,直接与接入层网络设备互连。汇聚层网络设备直接连接到核心层,核心层网络设备一般是一个企业或者数据中心的网络出口,一般是高端路由器设备或者高端数据中心设备。由此可见,传统数据中心的网络架构一般分为三层,接入层以二层业务为主,而汇聚层和核心层主要是三层业务。这样的网络架构从网络出现的时候开始几十年都没有多少变化,而变化的只有网络设备的性能和可提供的网络带宽。从10M半双工接入,到100M、1000M甚至是10G的接入带宽增长,同时在汇聚层也从1000M到10G,8口10G聚合绑定,40G端口及聚合端口绑定的带宽,在核心层也出现了100G的出口。这样的带宽在不改变网络架构上,只需要更换高性能的设备或板卡就可以实现。而通过采用更高性能的设备,也可以达到提升二三层规格性能的目的。目前的汇聚层设备,一般都可以提供二层MAC
32K~512K,三层路由8K~512K,这样的网络性能可满足10万台以上服务器的接入,也能提供100G以上的流量带宽。在这样高性能的网络环境中,网络架构已经无法适应这样高速、大容量的应用。所以网络架构的模式也在悄然演变。
传统的数据中心通过网络架构按功能进行区域划分,如WEB、APP、DB,办公区、业务区、内联区、外联区等等。不同区域之间通过汇聚层设备三层互访,从而保证不同区域的可靠性、安全性。同时,不同区域由于具有不同的功能,因此需要相互访问数据时,只要终端之间能够通信即可,并不一定要求通信双方处于同一VLAN或二层网络。所以传统的数据中心网络架构基本是二三层业务混合应用,不同层面的业务交叉应用,结构较复杂。带宽被认为是衡量网络架构的重要指标,以太网将扮演越来越重要的角色。随着带宽的逐步增加,传统的数据中心复杂的网络架构渐渐淡出人们的视线。
为了适应云计算、大数据技术的应用,数据中心网络架构逐渐演变为一种新的网络形式,相比传统的数据中心网络架构,新的数据中心网络架构将具有一些新的技术和特征。
三层的网络演变为大二层网络
随着网络IPV4地址的逐步减少,IPV6尚未得到普遍应用,数据中心内部采用过于复杂的三层网络,则会占用太多的IPV4地址,如果都采用内部私网地址,则访问会受到很大限制,若采用NAT设备进行地址转换,则会增加NAT设备的负担。随着新的网络架构直接采用二级网络:接入层和核心层。汇聚层将消失,这样网络架构的带宽将不会受到汇聚层的限制,而接入层直接接入到核心层,也可以减少网络设备投入。这样对网络设备要求比较高,传统的STP/MSTP环网技术无法适应这样大规模的网络架构,只能采用TRILL等新的二层技术。
虚拟化技术无处不在
传统的数据中心网络之间都是独立的,需要通过复杂的网络软件进行管理,大型的数据中心仅接入的网络设备就会有上千台,所以采用虚拟化技术,将几台、十几台的网络设备虚拟化为一台设备,这将大大简化网络管理的复杂度。如果小型的数据中心,也可以通过虚拟化技术将一台大型的网络设备分割成独立的几台虚拟设备,不同的业务采用不同的虚拟设备。在网络设备上应用虚拟化技术,这将大大降低数据中心的运行能耗,让数据中心运行更为绿色。
软件定义网络
软件定义网络近几年持续火热,将软件定义网络引入数据中心将极大程度地改变目前网络的架构。采用软件定义网络,将使网络架构更简单化。网络不再像原来那样很多层,将更加扁平化。可以快速根据业务需求来重新部署网络,可以灵活地从一个机柜的规模扩容到数据中心网络的规模。采用软件定义网络将使网络架构更开放,大多数网络厂家都会支持,这样采购设备也节省了投资。
万兆接入构筑信息高速路
数据中心的新网络设备均采用基于CLOS的多级交换架构,使其具备了10T以上的交换容量,能够支持高密度的万兆端口和单端口的100G带宽,具有更好的扩展性,能够很好的缓解数据中心核心层的交换压力,解决核心网络性能瓶颈,这使得万兆接入成为可能。在核心层全部采用40G以上端口或多个40G端口绑定互连。在网络架构上,全部采用万兆光纤、模块互连。为节省成本也可以采用10G的电缆互连,百兆/千兆逐渐被新的网络架构所淘汰。
存储和网络走向融合
传统的数据中心往往需要建设业务网络和存储网络两套网络架构,两个网络基本独立,这样大大浪费网络的利用率。随着IP SAN技术的发展,IP技术逐渐进入到存储领域,通过IP技术实现网络存储成为可能,这样完全可以在业务网和存储网采用一套网络架构。接入层网络设备已开始支持两种接入方式,即可以连接虚拟化的服务器,也可以连接存储设备。由于存储网络都是二层转发网络,所以只有新的网络架构才能促使网络架构走向融合。
新一代的数据中心网络架构具有了很多新兴的技术特征,所有的这些变化都是为了适应数据中心实际业务的发展需要。传统的三层网络架构必然将逐渐湮灭于历史的大潮中,也许十年,也许二十年,就在弹指一挥间,让我们展开双臂拥抱全新的网络架构吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12