京公网安备 11010802034615号
经营许可证编号:京B2-20210330
电商、视频、打车等现大数据杀熟 避免全靠企业自觉
近来,不少网友反映,在打车、电商、在线视频等行业存在“大数据杀熟”的情况:同样的商品,老用户购买比新用户贵;苹果用户购买比安卓用户贵。真的如此吗,背后有什么原因,中新网记者对此进行了调查。
多行业存“大数据杀熟”:苹果用户比安卓用户贵
3月27日上午,记者实测,在苹果手机上成功注册某知名视频网站账号后显示,其年度黄金VIP会员购买需428元,但同样的会员购买,在安卓手机上仅为178元,两者相差高达250元。
对此,该视频网站对中新网记者表示,因苹果支付需支付通道服务费(额外部分由苹果收取),所以会比安卓机上支付多收一点。
这并非多收一点。记者了解到,所谓苹果支付通道服务费,是指在苹果系统上,APP内购买项目苹果抽成,一般这个比例为30%,但安卓用户178元购买会员,即便增加30%,显然也达不到428元。
该视频网站表示,国内一些知名在线视频网站都是这样,具体多收多少,每家可能不一样,可以的话,用户可在非苹果端,如安卓手机、电脑网页端等购买会员。
其实,“大数据杀熟”不只存在于在线视频行业。据媒体报道,在电商、打车、通信行业都多多少少存在“大数据杀熟”情况。近来,就有媒体报道,网约车,同样的路程,苹果手机用户要比安卓手机用户多出几块钱。
还有用户对中新网记者表示,他经常用某第三方支付平台APP扫码商家二维码得随机红包,扫过几次成老用户后,后面基本都是得0.1元了,“如果没有大数据‘支持’,怎么会这么有规律?”
企业否认“杀熟”:新老用户差异系促销行为
除了不同手机平台不同价格外,对于新老用户在购买VIP会员存在价格差异一事,上述视频网站平台称,其从没有“大数据杀熟”。
“一般新用户首次购买VIP会员会有优惠,但这属于促销行为,每个行业拉新时都可能会采用。”该视频平台回应说。
近来,国内某网约车平台对于媒体“大数据杀熟”的报道也回应称,从未有过任何“大数据杀熟”的行为,其不允许价格歧视,打车价格更不会因人、因设备、手机系统而异。
“造成打车‘预估价’波动有多种原因,其中包括复杂的路况,优惠券的使用,乘客环境的精准定位等。”该网约车平台称。
在电信行业,“新老用户服务差异”也存在,很多电信套餐都明确规定,老用户不能办理或者不享受优惠,如近年流行的一些互联网套餐只针对新用户。
对此,有电信运营商内部人士此前对中新网记者表示,部分套餐是地域性的,还有一些是和虚拟运营商合作的,目前只能针对新用户。
为什么会出现这种情况?
近年来,很多企业都在布局大数据业务,一方面为了企业自身发展,另一方面也是为了造福用户,可为什么会出现“大数据杀熟”这种情况呢?
中国电子商务协会网络营销研究中心专家委员唐兴通接受中新网记者采访时表示,“大数据杀熟”早就存在,但企业一般都不会做的太明显,因为这对企业也有风险,一旦遭曝光,其产品在用户心中的信任度会大打折扣,再想重建,或需付出成倍的努力。
唐兴通还表示,利用“大数据杀熟”主要和经营者理念有关系,虽然目前没有明文规定不允许这么做,但这公认为违背商业伦理。
电子商务研究中心主任曹磊指出,所谓“大数据杀熟”,有两种情况。一是不同的平台制定了不同的价格,还有一种情况是同一平台针对不同的消费者制定了不同的价格。
“同一平台不同价格这种‘大数据杀熟’属于违法行为,违反了消费者权益保护法中规定的公平诚实信用原则,侵犯了消费者的知情权,还涉嫌价格欺诈。” 曹磊称。
如何避免被“杀熟”?
对于如何避免被“杀熟”,唐兴通认为,目前全靠企业自觉。记者也进行了相关资料梳理,仅供网友参考。
首先准备个安卓手机,诸如打车、网购、买会员、订机票等还是在非苹果端或电脑网页上操作吧。
网购如果不着急,尽量少使用“购物车”功能,目前不少电商系统都有“购物车”功能,但很多情况下,加入购物车后的商品,涨价很及时,降价不提示。订购机票同理。
多注册小号。这个用起来虽然繁琐,效果却是极好的,一般诸如购买在线视频网站VIP服务等,新注册用户基本都会有优惠。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27