京公网安备 11010802034615号
经营许可证编号:京B2-20210330
以网络安全为例的大数据可视化设计
大数据可视化是个热门话题,在信息安全领域,也由于很多企业希望将大数据转化为信息可视化呈现的各种形式,以便获得更深的洞察力、更好的决策力以及更强的自动化处理能力,数据可视化已经成为网络安全技术的一个重要趋势。
一、什么是网络安全可视化
攻击从哪里开始?目的是哪里?哪些地方遭受的攻击最频繁……通过大数据网络安全可视化图,我们可以在几秒钟内回答这些问题,这就是可视化带给我们的效率 。 大数据网络安全的可视化不仅能让我们更容易地感知网络数据信息,快速识别风险,还能对事件进行分类,甚至对攻击趋势做出预测。可是,该怎么做呢?
1.1 故事+数据+设计 =可视化
做可视化之前,最好从一个问题开始,你为什么要做可视化,希望从中了解什么?是否在找周期性的模式?或者多个变量之间的联系?异常值?空间关系?比如政府机构,想了解全国各个行业漏洞的分布概况,以及哪个行业、哪个地区的漏洞数量最多;又如企业,想了解内部的访问情况,是否存在恶意行为,或者企业的资产情况怎么样。总之,要弄清楚你进行可视化设计的目的是什么,你想讲什么样的故事,以及你打算跟谁讲。

有了故事,还需要找到数据,并且具有对数据进行处理的能力,图1是一个可视化参考模型,它反映的是一系列的数据的转换过程:
我们有原始数据,通过对原始数据进行标准化、结构化的处理,把它们整理成数据表。
将这些数值转换成视觉结构(包括形状、位置、尺寸、值、方向、色彩、纹理等),通过视觉的方式把它表现出来。例如将高中低的风险转换成红黄蓝等色彩,数值转换成大小。
将视觉结构进行组合,把它转换成图形传递给用户,用户通过人机交互的方式进行反向转换,去更好地了解数据背后有什么问题和规律。
最后,我们还得选择一些好的可视化的方法。比如要了解关系,建议选择网状的图,或者通过距离,关系近的距离近,关系远的距离也远。
总之,有个好的故事,并且有大量的数据进行处理,加上一些设计的方法,就构成了可视化。
1.2 可视化设计流程

一个好的流程可以让我们事半功倍,可视化的设计流程主要有分析数据、匹配图形、优化图形、检查测试。首先,在了解需求的基础上分析我们要展示哪些数据,包含元数据、数据维度、查看的视角等;其次,我们利用可视化工具,根据一些已固化的图表类型快速做出各种图表;然后优化细节;最后检查测试。
具体我们通过两个案例来进行分析。
二、案例一:大规模漏洞感知可视化设计

图2是全国范围内,各个行业漏洞的分布和趋势,橙黄蓝分别代表了漏洞数量的高中低。
2.1整体项目分析
我们在拿到项目策划时,既不要被大量的信息资料所迷惑而感到茫然失措,也不要急于完成项目,不经思考就盲目进行设计。首先,让我们认真了解客户需求,并对整体内容进行关键词的提炼。可视化的核心在于对内容的提炼,内容提炼得越精确,设计出来的图形结构就越紧凑,传达的效率就越高。反之,会导致图形结构臃肿散乱,关键信息无法高效地传达给读者。
对于大规模漏洞感知的可视化项目,客户的主要需求是查看全国范围内,各个行业的漏洞分布和趋势。我们可以概括为三个关键词:漏洞量、漏洞变化、漏洞级别,这三个关键词就是我们进行数据可视化设计的核心点,整体的图形结构将围绕这三个核心点来展开布局。

2.2分析数据
想要清楚地展现数据,就要先了解所要绘制的数据,如元数据、维度、元数据间关系、数据规模等。根据需求,我们需要展现的元数据是漏洞事件,维度有地理位置、漏洞数量、时间、漏洞类别和级别,查看的视角主要是宏观和关联。涉及到的视觉元素有形状、色彩、尺寸、位置、方向,如图4。
2.3匹配图形

分析清楚数据后,就要找个合适的箱子把这些“苹果”装进去。上一步,或许还可以靠自身的逻辑能力,采集到的现成数据分析得到,而这一步更多地需要经验和阅历。幸运的是,现在已经有很多成熟的图形可以借鉴了。从和业务的沟通了解到,需要匹配的图形有中国地图、饼图、top图、数字、趋势等。
2.4确定风格

匹配图形的同时,还要考虑展示的平台。由于客户是投放在大屏幕上查看,我们对大屏幕的特点进行了分析,比如面积巨大、深色背景、不可操作等。依据大屏幕的特点,我们对设计风格进行了头脑风暴:它是实时的,有紧张感;需要新颖的图标和动效,有科技感;信息层次是丰富的;展示的数据是权威的。
最后根据设计风格进一步确定了深蓝为标准色,代表科技与创新;橙红蓝分别代表漏洞数量的高中低,为辅助色;整体的视觉风格与目前主流的扁平化一致。
2.5优化图形
有了图形后,尝试把数据按属性绘制到各维度上,不断调整直到合理。虽然这里说的很简单,但这是最耗时耗力的阶段。维度过多时,在信息架构上广而浅或窄而深都是需要琢磨的,而后再加上交互导航,使图形更“可视”。

在这个任务中,图形经过很多次修改,图7是我们设计的过程稿,深底,高亮的地图,多颜色的攻击动画特效,营造紧张感;地图中用红、黄、蓝来呈现高、中、低危的漏洞数量分布情况;心理学认为上方和左方易重视,“从上到下”“从左至右”的“Z”字型的视觉呈现,简洁清晰,重点突出。
完成初稿后,我们进一步优化了维度、动效和数量。维度:每个维度,只用一种表现,清晰易懂;动效:考虑时间和情感的把控,从原来的1.5ms改为3.5ms;数量:考虑了太密或太疏时用户的感受,对圆的半径做了统一大小的处理。
2.6检查测试
最后还需要检查测试,从头到尾过一遍是否满足需求;实地投放大屏幕后,用户是否方便阅读;动效能否达到预期,色差是否能接受;最后我们用一句话描述大屏,用户能否理解。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08在数据驱动决策的链路中,统计制图是CDA(Certified Data Analyst)数据分析师将抽象数据转化为直观洞察的关键载体。不同于普通 ...
2026-01-08在主成分分析(PCA)的学习与实践中,“主成分载荷矩阵”和“成分矩阵”是两个高频出现但极易混淆的核心概念。两者均是主成分分 ...
2026-01-07在教学管理、学生成绩分析场景中,成绩分布图是直观呈现成绩分布规律的核心工具——通过图表能快速看出成绩集中区间、高分/低分 ...
2026-01-07在数据分析师的工作闭环中,数据探索与统计分析是连接原始数据与业务洞察的关键环节。CDA(Certified Data Analyst)作为具备专 ...
2026-01-07在数据处理与可视化场景中,将Python分析后的结果导出为Excel文件是高频需求。而通过设置单元格颜色,能让Excel中的数据更具层次 ...
2026-01-06在企业运营、业务监控、数据分析等场景中,指标波动是常态——无论是日营收的突然下滑、用户活跃度的骤升,还是产品故障率的异常 ...
2026-01-06在数据驱动的建模与分析场景中,“数据决定上限,特征决定下限”已成为行业共识。原始数据经过采集、清洗后,往往难以直接支撑模 ...
2026-01-06在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04