京公网安备 11010802034615号
经营许可证编号:京B2-20210330
物流企业如何打造商业智能
现代物流管理的发展大致经历了三个阶段,即传统储运物流阶段、系统优化物流阶段和物流信息化阶段。当前,物流信息化虽然使物流系统反应敏捷、效率提高、整体效益明显,但由于信息管理对象的局限性,仍难以实现物流系统智能化的目标,使得物流信息化必将走向知识管理为主的BI阶段。
信息化迈向知识管理
尽管“物流管理、信息先行”己经成为全球物流企业共识,但是北京师范大学珠海物流学院徐天亮教授认为,信息化对物流的发展发挥了重要作用,但它不能给物流系统带来创新价值,唯有知识管理才具有创新功能,使物流系统发生质的变化。
对于企业来说,物流信息化注重信息技术的利用和信息收集、处理、传递,管理对象主要是业务信息,即显性知识。但信息管理只能使信息成为行动的基础的方式,不能使信息通过个人或组织的自身知识的作用而成为更有效的行为。企业员工接收信息后,必须结合自身经验、教训,经过思考方能做出行为决策。
对于同种信息,不同人做出的决定会不同,产生效益的程度也不同。可见对企业决策起实质影响的是人的经验、教训以及思维方式等看不见、摸不着的隐性知识,这是物流信息化利用信息技术无法收集的。同时,物流员工也难以利用物流信息系统借鉴、倾听员工获得的教训,以及参考最好的实践经验和物流专业知识进行知识复用和知识创新。
物流信息化向BI升级势在必行。物流质量取决于信息,物流服务依靠信息,商务智能通过对数据的采集、整理、挖掘、分析,为第三方物流企业组织内的各层次人员提供信息,提高企业的决策能力,加快决策速度,确保决策准确性,同时实现企业内部的远程管理。另一方面,也为企业外部用户提供有效信息,共同分享销售、库存等商业数据,共同进行品类分析和管理,提升了对外服务水平。商务智能作为一项新兴技术已成为物流管理中最有力工具之一。在当今瞬息万变的社会中,只有智能驱动型的企业才能在激烈的竞争中取胜。
第三方物流向BI升级
长期以来,我国物流企业运作效率低、成本高,决策缓慢。由于缺乏科学的物流管理方法和技术,导致库存过高,运输成本高,资金周转慢等问题。最近一次中国物流市场供需状况调查报告显示,85%左右的企业商品库存期在1周至3个月。现实表明我国物流企业需要象商业智能(BI)这样的技术支持。
当前,是否能够提供完整的物流解决方案成为第三方物流发展的必然。高效的供应链系统对生产企业至关重要,而人们对物质产品的需求表现出多样化和个性化的特点,对商品品种、质量以及售后服务的要求越来越高。这对进货方式、配送产生深刻影响,订货周期越来越短,频率越来越高,配送要求也不断提高。科学的管理和快速决策变得更加重要。
物流的过程是商流、资金流和信息流“三流合一”的过程,现代物流要求将这些过程有机的统一起来,减少重复、非效率、不能增值的活动,提高物流效率和物流服务的可靠性。
物流企业联系着生产和销售环节,物流企业不仅要做好内部管理工作,为企业内部从管理层到一般员工提供适时准确信息,促进企业内部效率提高。同时还肩负为企业外部用户如合作伙伴、供应商和客户提供及时、有效的信息资源,通过信息共享提升他们的价值。
宝供物流CIO顾小昱认为第三方物流信息化正在向BI转化升级,这是
物流走向高端发展的必然,我国物流企业如何才能利用后发优势,抓住机遇,领先对手而不是被对手甩下是当前物流发展的核心问题之一,从日常交易数据中获得更有价值信息,快速决策成为成功的关键因素之一。对物流的将来,信息技术和计算机系统将会成为最重要,最有影响的因素。对企业而言,速度就是生命。企业决策者如何在第一时间获取所需要的信息,并及时做出决策,是企业制胜的关键。企业拥有的信息越多,分析能力越强,速度越快,则投资回报就越高。
如何打造商业智能
商业智能在物流企业管理和决策支持中具有快速查询信息,突破认知极限,多角度、全面分析,信息增值的作用。商业智能通过获得高质量、有意义的信息,帮助企业分析问题,及时、准确做出决策,提高内部运作效率,提升了物流服务水平。
而在实际应用中,商业智能主要依靠数据仓库、在线分析处理和数据挖掘这三大技术,为企业及时了解货物信息、实时跟踪订单、制定经济决策提供信息保障和信息支持。
智能仓储管理系统。该系统集成了入库、出库、货位和保管的实时和历史数据,构成数据仓库,为在线分析处理和数据挖掘创造应用环境,从而有助于从业务数据中发现深层次的信息和知识,将非直观的、隐含的信息和知识以直观的形式描述,辅助领导层决策。使得物流企业对客户需求更快速反应,实现对商品进库量和出库量的动态管理,加快存货周转率,减少库存,提高财务效益。
智能交通系统。这是应用信息技术、通信技术、定位技术,来改善交通运输效率,增加安全,保证及时到货的一场物流技术革命。它依靠地理信息系统和无线射频技术,对运输整个过程跟踪管理,为管理中心采集车辆、货物在途基础数据,提供沿途交通、道路状况信息,提供最佳路线和实时导航信息,为供应商和收货方提供有关货物预计到达信息、货物状态信息。从而保证了货物全面、准确、及时运送到客户手中。
个性化分析。商业智能系统根据企业需要解决的问题,帮助企业建立相应的分析主题和分析指标,从业务系统的基础数据库中抽取需要的数据,按预先建立的业务模型进行分析决策,分析结果显示直观、形象。决策者只需要简单地点取操作,便可从商业智能强大的分析工具中获得所需的决策信息。物流企业中,可以通过商业智能对库存、采购、财务等进行个性化分析。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27