
浅析大数据的基础架构
大数据虽然在不同的应用场景、不同企业环境应用方式会千差万别,但是常见的基本架构如图示。大数据都会有自己的基础架构平台,一般推荐是基于云计算的动态弹性平台,因为这将为大数据的分析处理提供强有力的支撑。当然,为了加速数据处理,Hadoop这类的基础处理平台也是必不可少的,包括实时数据处理的模块,加速数据处理的进度。大数据的价值和时间密切相关,如果不能及时将大数据快速处理,分析后的结果很可能就成为“事后诸葛亮”,好听好看没用途,相信任何一个企业都不希望大数据成为摆设。当然,不同的行业、场景会有数据分析、展示模块来配合,这些都需要数据科学家、分析师、开发者等共同配合完成,将移动互联网、物联网、社交媒体、实时数据流等进行分析处理,抽取出其中最有价值的规律、结论等,服务于我们面对的每个新明天和我们的新客户需求。
大数据不会推翻我们传统构建的传统结构化数据的堡垒,特别是普遍应用在企业数据中心的关系型数据库,仍然会是处理结构化数据的主要工具。但在大数据时代,我们更应该聚焦非结构化数据,结构化数据已经有了不错的归宿,非结构化数据才是我们处理的难题。据预测,到2020年,非结构化数据将数十倍于传统的结构化数据,成为大数据最主要的数据来源。Hadoop在大数据时代如日中天,成为很多企业追逐的对象,因为今天的Hadoop是非结构化数据的一大福音,通过Hadoop可以轻松掌控非结构化数据。
但是我们要充分认识到大数据确实不是传统关系型数据库能够轻松应对的,由于非结构化数据的来临,传统关系型数据库立马力不从心。同时,实时数据要求的低延迟、数据流处理也是传统数据库的软肋。当然,灵活模式、云架构以及海量数据处理要求,都导致传统关系型数据库陷入困顿,只能寻找新的数据处理模式,比如Hadoop等,这也是开源的Hadoop如此受业界追捧的主要原因。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10在科研攻关、工业优化、产品开发中,正交试验(Orthogonal Experiment)因 “用少量试验覆盖多因素多水平组合” 的高效性,成为 ...
2025-10-10在企业数据量从 “GB 级” 迈向 “PB 级” 的过程中,“数据混乱” 的痛点逐渐从 “隐性问题” 变为 “显性瓶颈”:各部门数据口 ...
2025-10-10在深度学习中,“模型如何从错误中学习” 是最关键的问题 —— 而损失函数与反向传播正是回答这一问题的核心技术:损失函数负责 ...
2025-10-09本文将从 “检验本质” 切入,拆解两种方法的核心适用条件、场景边界与实战选择逻辑,结合医学、工业、教育领域的案例,让你明确 ...
2025-10-09在 CDA 数据分析师的日常工作中,常会遇到这样的困惑:某电商平台 11 月 GMV 同比增长 20%,但究竟是 “长期趋势自然增长”,还 ...
2025-10-09Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30