京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据未来蔓延趋势
语义网,或者说web3.0,经常被引述为互联网的未来。语义网将使所有人以及所有连接到互联网的设备互相通信,并让不同应用程序和企业实时分享和再利用数据。大数据的未来将会利用语义网的优势,并且,这将会对企业和社会带来巨大的影响。
Joyent首席技术官Jason Hoffman预测,大数据的未来将是数据、计算和网络的融合。PC则是计算和网络的融合,而计算和数据的融合将允许对EB级原始数据直接进行分析,并允许对非常大的数据集提出问题。
匹配人类智力的人工智能将允许我们更简单地提问题和寻找答案,我们只需要向计算机提出自然的问题即可。目前,日本科学家已经建立了模仿人类脑细胞网络的超级计算机,并实现了1%的脑容量。脑细胞网络包含1730亿神经细胞,通过10.4万亿个突触连接。整个过程花了40分钟,来模拟1秒钟的神经网络活动。在未来几年,这些超级计算机将会成为标准。现在,用户仍然需要知道你想知道的,但在未来,这种超级计算机将提供你所有不知道的信息。
真正的优势在于,当企业不再需要提问题来获得答案,而是简单地找出他们绝不可能想到的问题的答案。先进的模式发现和模式分类将使算法为企业执行决策过程。另外,虚拟化将变得越来越重要,帮助企业理解BB级(brontobyte)数据。
在未来几十年里,大数据科学家将非常走俏。然而,在大数据初创公司领域,真正的赢家将是那些让大数据易于理解、部署和使用的企业,这将使企业不再需要大数据科学家。大型企业始终会有大数据科学家,但更广泛的中小企业则没有钱来聘请昂贵的大数据科学家或专家。因此,那些能够帮助中小企业解决大数据问题的大数据初创公司,将会有着巨大的竞争优势。
这些大数据初创公司开发的算法将会更加“聪明”,智能手机将变得更好,在未来,每个人的口袋里都会有一个超级计算机,可以在实时执行复杂的计算任务,并将其可视化在手中的小屏幕中。并且,通过物联网和数万亿的传感器,这些设备需要处理的数据量将会成倍增长。
大数据只会变得更大,BB级数据将会成为企业会议中的常用语。幸运的是,数据存储也将越来越广泛以及便宜,以解决庞大的数据量。BB级数据将会非常普遍,最终,大数据术语将会再次消失,大数据将再次“沦为”数据。
然而,在我们到达这个阶段之前,企业和政府处理的不断增加的数据将会带来隐私关注。那些坚持道德准则的企业将会存活下来,其他轻视隐私问题的企业将会消失。关于大数据对消费者隐私的影响的辩论将会越演越烈,我们必须确保我们最终不会像电影《少数派报告》中那样。
对于大数据的未来,我们仍然无从知晓,随着大数据时代开始蔓延,很显然,摆在我们前面的变化将会改变企业和设备。大数据并不会消失,企业将需要适应这个新的范式。企业可能可以推迟其大数据战略,但我们看到已经有企业部署了大数据战略,来超越其竞争对手。因此,如果你想在即将到来的大数据时代提供产品和服务的话,现在你就应该开始制定自己的大数据战略,已经没有时间可以浪费。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20