京公网安备 11010802034615号
经营许可证编号:京B2-20210330
电商品质化升级 大数据成平台品控利器
作为连接消费者和商品的纽带,电商平台对商品品质的管控关系到消费者的权益能否落实。在保证品质的过程中,平台方一面要协助保障消费者权益,另一面也要对入驻的商家和商品负责,其角色的重要性可见一斑。
平台方如何更好地履行职责?京东集团无界零售赋能事业部品质提升部高级总监陈宇向媒体讲述了京东的品控经验。
加强监管 多环节引入数据支持
目前京东商城的自营商品占了较大比重,这一部分商品的管理已经非常成熟。对于第三方商家的管控成为重点。陈宇表示,对于平台入驻的第三方商家,京东考量其商品质量是否有保证会分为三步:第一,与政府监管机构沟通了解商家的信用情况;第二,会审查申请经营的品类资质;第三,在经营过程中的监管体系。前两步主要是在入驻之前进行,第三步则是成功入驻之后。
为了更加有效的进行管控,京东在多个环节引入了大数据。例如,京东会跟一些政府机关打通数据库,拿到类似于黑名单或者违规经营的名单,杜绝这样的商家入驻平台。同时还有大量的用户行为数据的收集和整理。
“电商只能靠大数据,只能靠系统化,必须是在研发和技术上大量投入。”陈宇说,“希望未来借助国家机构的数据,一起与国家共同建立企业诚信和个人诚信档案库。”
海外购是公认的品质控制难点,在这一点上,京东从2017年9月份开始,对全球购进行了一次大规模的质量提升行动,把店铺重新入驻的规则包括资质进行了梳理。陈宇认为,最终,京东所定义的全球购,是尽可能的去跟品牌方合作,引进国外当地的品牌方。同时通过海外机构,包括与当地的使馆和商业协会合作,让他们来协助认证那些在京东开全球购的店铺。
赋能商家 除劣同时更要扶优
“京东不仅仅只是一个平台,而希望能带给商家更多,希望能以我们的能力去向商家输出”,陈宇表示。京东秉持对假货的态度零容忍,但是对于质量不合格的产品,处罚之外,京东会帮助商家一块找问题的根源。
以标识或者标签不规范最后抽检后定义商品不合格为例,规模较大的工厂对于规范的理解没有问题,而中小的企业质量管理人员或者生产人员对规范理解可能存在一定的偏差,这些问题是通过平台帮助商家改善的。
“我们去年开始做了标签专项提升的试点,下半年试点效果比较好,今年会大力推广以帮助我们平台上的生产企业和第三方将标签规范化。” 陈宇说。
对于京东来讲,前几年更多关注于如何在这个平台去防范一些不合格的商品和不规范的商家,也就是“除劣”,而今年关注的重点在于怎么把优秀的东西展示出来,让用户能很容易的选到,也就是“扶优”。商品质量的把关一定要严格,但是同时把更多优质的商品推荐给用户,让其成为消费者的首选,为品质管控提供了新的思路。
“原来光去看排名,或者竞价广告这种是不可取的。现在京东对于这个品类定好标准,搜索加一些权重,相当于京东来认证优质的企业和产品。”陈宇表示,一方面,用户买的时候这些商品会有京东的背书和把关,会更省时更省心。另一方面,购买次数越多,京东后台就会有更多数据,有些数据很高的商品当月的销售量涨了百分之五、六百,让优质的商品更受欢迎。
随着315的临近,品质问题的关注会达到一个新的高度,电商打假刻不容缓。陈宇呼吁:整个中国电商应该是一个整体,希望各个平台联起手来,不要各自为战,而是形成一种联盟,让一地造假在多地无法生存。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20