
别让“杀熟”杀死大数据
在本质上,大数据“杀熟”与传统经济的“杀熟”并无区别,体现的是一种滞后的商业文明,反映的是一种落后的商业伦理。
最近,有网友自述了被大数据“杀熟”的经历。据了解,他经常通过某旅行服务网站订某个特定酒店的房间,长年价格在380元到400元左右。偶然一次,通过前台了解到,淡季的价格在300元上下。他用朋友的账号查询后发现,果然是300元;但用自己的账号去查,还是380元
对于互联网和大数据,人们有着一种天然好感,想不到竟然存在这样的“杀熟”现象。从网友反馈来看,这种情况十分普遍。比如,“我和同学打车,我们的路线和车型差不多,我要比他们贵五六块”“选好机票后取消,再选那个机票,价格立马上涨,甚至翻倍”……正如歌中所唱,最懂你的人伤你最深。
大数据本身没有罪恶。然而,大数据的出现与成长一直伴随着各种怀疑和忧戚,事实也证明这一切并非杞人忧天。“杀熟”是新表现,但就“杀熟”本身来说,却是老问题。在本质上,大数据“杀熟”与传统经济的“杀熟”并无区别,体现的是一种滞后的商业文明,反映的是一种落后的商业伦理。君子爱财,取之有道。不过,在有些人眼中,在爱财取财这条路上,只恨无道,不分什么大道小道、正道邪道。
大数据“杀熟”,“杀”的是消费者,又何尝不是整个行业?人们对以互联网为代表的新经济,有着一种初恋的感觉,亦如对待自己的孩子一样,哪怕有一些问题,也以瑕不掩瑜为由选择性忽视了。这种舆论好感,是新经济发展的最大助力。当我们感慨没有包容审慎就没有微信时,是整个互联网经济的常态。现在,发生大数据“杀熟”现象,看似挣了一点小钱,但长此以往,只会透支舆论信任,最终让整个行业的未来遭受打击。
有人可能想问,现在实体经济领域已经很少出现“杀熟”了,而大数据“杀熟”是不是说明现在新经济领域的商业伦理尤其不堪?问题确实需要重视,但也不能说新经济在商业伦理上就尤其不堪。“杀熟”从传统经济转向新经济,更多的是因为传统经济领域已经逐渐形成了一套相对有效的约束体系,越来越不具备“杀熟”的空间。但新经济不同,由于大数据本身的特点具有相当的迷惑性,而在对平台的监管也有不足,这在事实上提供了“杀熟”空间。
面对大数据“杀熟”,理性的态度不是“把孩子和洗澡水一起倒掉”。大数据技术普及是大势所趋,有利于实现与满足美好生活需要。当下更重要的,还是针对问题拿出有力有效的办法,防止大数据伤人吃人。解决这个问题,很难毕其功于一役,监管部门必须从制度上重视,真正写好抓常抓细抓长的文章;消费者也要擦亮眼睛,学会“有态度的消费”;新经济行业更应该增强行业自律,维护行业形象。值得一提的是,别因大数据“杀熟”杀死大数据,舆论要有理性态度,大数据本身更要有清醒态度——行业发展离不开舆论支持,损人到最后必然损己。
大数据“杀熟”不过是老问题的新表现,确实需要引起重视,但不必过分紧张,不要因此对大数据失去信心。商业伦理的塑造,商业秩序的形成,从来都不容易。可以预言的是,在新经济发展中,在大数据应用中,还会出现一些新问题。真正的高手从来都不惧怕问题,而是见缝插针地点破问题,见招拆招地解决问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07