京公网安备 11010802034615号
经营许可证编号:京B2-20210330
别让“杀熟”杀死大数据
在本质上,大数据“杀熟”与传统经济的“杀熟”并无区别,体现的是一种滞后的商业文明,反映的是一种落后的商业伦理。
最近,有网友自述了被大数据“杀熟”的经历。据了解,他经常通过某旅行服务网站订某个特定酒店的房间,长年价格在380元到400元左右。偶然一次,通过前台了解到,淡季的价格在300元上下。他用朋友的账号查询后发现,果然是300元;但用自己的账号去查,还是380元
对于互联网和大数据,人们有着一种天然好感,想不到竟然存在这样的“杀熟”现象。从网友反馈来看,这种情况十分普遍。比如,“我和同学打车,我们的路线和车型差不多,我要比他们贵五六块”“选好机票后取消,再选那个机票,价格立马上涨,甚至翻倍”……正如歌中所唱,最懂你的人伤你最深。
大数据本身没有罪恶。然而,大数据的出现与成长一直伴随着各种怀疑和忧戚,事实也证明这一切并非杞人忧天。“杀熟”是新表现,但就“杀熟”本身来说,却是老问题。在本质上,大数据“杀熟”与传统经济的“杀熟”并无区别,体现的是一种滞后的商业文明,反映的是一种落后的商业伦理。君子爱财,取之有道。不过,在有些人眼中,在爱财取财这条路上,只恨无道,不分什么大道小道、正道邪道。
大数据“杀熟”,“杀”的是消费者,又何尝不是整个行业?人们对以互联网为代表的新经济,有着一种初恋的感觉,亦如对待自己的孩子一样,哪怕有一些问题,也以瑕不掩瑜为由选择性忽视了。这种舆论好感,是新经济发展的最大助力。当我们感慨没有包容审慎就没有微信时,是整个互联网经济的常态。现在,发生大数据“杀熟”现象,看似挣了一点小钱,但长此以往,只会透支舆论信任,最终让整个行业的未来遭受打击。
有人可能想问,现在实体经济领域已经很少出现“杀熟”了,而大数据“杀熟”是不是说明现在新经济领域的商业伦理尤其不堪?问题确实需要重视,但也不能说新经济在商业伦理上就尤其不堪。“杀熟”从传统经济转向新经济,更多的是因为传统经济领域已经逐渐形成了一套相对有效的约束体系,越来越不具备“杀熟”的空间。但新经济不同,由于大数据本身的特点具有相当的迷惑性,而在对平台的监管也有不足,这在事实上提供了“杀熟”空间。
面对大数据“杀熟”,理性的态度不是“把孩子和洗澡水一起倒掉”。大数据技术普及是大势所趋,有利于实现与满足美好生活需要。当下更重要的,还是针对问题拿出有力有效的办法,防止大数据伤人吃人。解决这个问题,很难毕其功于一役,监管部门必须从制度上重视,真正写好抓常抓细抓长的文章;消费者也要擦亮眼睛,学会“有态度的消费”;新经济行业更应该增强行业自律,维护行业形象。值得一提的是,别因大数据“杀熟”杀死大数据,舆论要有理性态度,大数据本身更要有清醒态度——行业发展离不开舆论支持,损人到最后必然损己。
大数据“杀熟”不过是老问题的新表现,确实需要引起重视,但不必过分紧张,不要因此对大数据失去信心。商业伦理的塑造,商业秩序的形成,从来都不容易。可以预言的是,在新经济发展中,在大数据应用中,还会出现一些新问题。真正的高手从来都不惧怕问题,而是见缝插针地点破问题,见招拆招地解决问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20