京公网安备 11010802034615号
经营许可证编号:京B2-20210330
商业智能技术存在那些弊端
BI的真正价值主要体现BI系统能够变丰富的行业经验为我所用。发挥着业务理解、客户分类和特点分析、改善关系、市场营销策略分析、经营成本与收入分析、欺诈行为分析和预防等作用。商业智能引导我们进入一个新时代,对于分析、报表和绩效管理,企业用户拥有更多控制权。企业用户不再依赖IT部门支持每一项需求,从而获得了更快更好的决策。但是还是有一部分企业对商业智能存在不同程度的误解,主要表现在以下几个方面:
1.商业智能没有定位于战略层次
如果企业把商业智能和数据仓库看成是战略性的问题而不是一般性或不重要的问题,就有可能增加这些项目成功的可能性。企业必须认识到商业智能在任何企业的成功都不是一个偶然事故,它所需要的也不只是技术,战略、组织、方法论、架构和技能等问题在其中扮演着重要的角色,因而必须走到前台来。企业的商业智能项目的战略失败主要在于:未能认识到商业智能项目是跨部门的商务计划,未能理解商业智能不同于那些孤立的解决方案,从而缺乏积极参与的支持者或者支持者在企业中没有权威;缺乏来自业务部门的代表或来的代表不够主动和积极;缺乏有技能、有实践的员工或者对这样的员工的利用不充分;缺乏分工以及循环型的软件开发方法和相关方法论;缺乏商务分析或活动标准,对“劣质数据影响一切”缺乏认知和对策;对元数据的必要性和使用缺乏理解,过分依赖分散的方法和工具。
2.商业智能愿景和路线图模糊和分割
商业智能计划必须要有一个整体而清晰的愿景和路线图,否则,就很难统一起来。在更细节化的层面建立逻辑化、系统化的方法对于项目成功是至关重要的。BI对于一个企业系统的建设来说,是一个循序渐进的过程。对大部分需要构建BI系统的企业而言,不仅需要充足的预算资金、周密的项目规 划,而且需要多年的历史数据积累,条件才算成熟。企业需要对自身的生产经营管理系统的数据进行有效整合,否则实施方很难构建出辅助企业决策管理的应用模型以及所需要实现的数据分析应用。在一些金融行业的IT规划中,由于自身系统相对于其他行业较为完善和先进,历史数据储备也比较理想,通常在规划新项目的时候,会把BI系统和新增加的应用系统同时设计。
3.商业智能所有潜在收益的非理性认识
商业智能项目还必须考虑如何为项目所需要的巨大成本提供正当理由,找出商业智能的所有潜在收益。商业智能项目的成本当中有些是很明显的,有些很微妙,通常被忽视。企业只有认识到这些成本的驱动因素,建立有效的商业价值框架才能设定适当的期望值并有效地管理这方面的投资,从而不但收回成本,而且将价值最大化。其次,企业在进行商业智能项目的时候,还要考虑如何利用现成的商业智能软件包,认清商业智能软件厂商的造势当中哪些是虚的,哪些是实的。现在有很多商业智能软件公司都推出许多很吸引人的“仪表板”和关键指标的视觉化工具,但是,这些工具往往是实用性不够,企业透过外表理解用于计算这些指标的管理方法论才是更重要的。随着越来越多的企业要部署绩效管理系统,商业智能软件的作用会进一步增长,这要求企业把商业智能软件纳人企业软件管理的整体战略之中。
4.商业智能建构方法多元性的缺乏
在进行商业智能的过程中,企业可以采取的架构方法多种多样。这些方法没有高下之分,只要能够把商务用户所需要的信息及时地传递给他们,这种方法就应该被认为是正确的。方法之间的区别就像是实用价值的工具标准。在考虑商业智能的架构的同时,还必须理解和确保各种技术组成部分相互吻合,加起来能提供最大的长期价值,而且要有一定的灵活性和敏捷性。
5.商业智能技术市场缺乏理解和警惕
商业智能数据库管理系统、查询、报告和提取、转换、装载等技术工具市场并不稳定,厂商合并和技术合流的现象时有发生,有些弱小的厂商就会面临强大的市场压力和被兼并的风险。因而企业在选择各种软件的时候,不得不考虑软件厂商的稳定性和生存率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27