京公网安备 11010802034615号
经营许可证编号:京B2-20210330
地球大数据 中国正发力
近年来,大数据已全方位进入经济社会和人们的生活当中。大数据为科学研究带来了新的方法论,帮助人们用全新的模式实现科学发现。中国对大数据资源的整合和利用,也在重视和发力。
12日,中国科学院A类战略性先导科技专项“地球大数据科学工程”正式启动。该专项以建成具有全球影响力、国际化、开放式的国际地球大数据科学中心为目标,致力于推动并实现地球大数据创新、重大科学发现和一站式全方位宏观决策支持。
我国拥有海量地球大数据,集成共享能发挥更大应用价值
地球大数据是具有空间属性的地球科学领域大数据,尤其指基于空间技术生成的海量对地观测数据,具有海量、多源以及更精准、更科学、更及时的独特优势。
据统计,全球数据总量每年都在倍增,预计到2025年将达到163ZB,中国数据量将约占全球数据总量的20%。越来越多的国家认识到,大数据蕴藏巨大价值和潜力,是与矿产资源、水利资源一样重要的战略资源。然而,数据海量、碎片分散、应用低效是当前中国乃至整个地球科学界面临的严峻问题。
以中科院为例。目前,全院地球大数据资源总量约38PB+8000万条记录,已形成210余个数据库。预计未来5年内,新增数据量将超过10PB。中国科学院党组书记、院长白春礼说:“尽管中科院数据资源很丰富,但存在资源分散、重复布局、成果凝练与影响力不足等一系列问题,数据开放共享政策不够完善、共享效果差强人意。”
同时,我国经济社会发展面临的很多重大问题,如气候变化、自然灾害、资源短缺、生态退化、水土污染、大气雾霾等,都需要多学科深度交叉联合,开展系统和综合的研究。“在资源、环境、生物、生态等多学科、跨领域交叉场景下,孤立使用单一特定领域的已有挖掘分析理论和方法已经难以有效推动科学发现,需要综合应用这些方法,系统性、整体性去解决某些重大科学问题。”白春礼说,“大数据将为这些研究提供新的技术手段、创新视角,促进新的科研范式的形成。”
基于此,中国科学院决定启动“地球大数据科学工程”先导专项,以提升中科院乃至国家层面地球科学领域海量数据的集成共享水平,从而发挥更大的应用价值。
探索形成大数据驱动、多学科融合的科学发现新范式
“地球大数据科学工程”专项为期5年(一期建设期),设置地球大数据科学工程总体、地球科学小卫星、大数据云平台、数字“一带一路”、全景美丽中国、生物多样性与生态安全、三维信息海洋、时空三极环境、数字地球科学平台共9个项目。
专项负责人、中科院遥感与数字地球研究所郭华东院士说:“地球大数据科学工程总体、地球科学小卫星和大数据云平台这3个项目属于综合型基础设施项目。地球大数据云平台,就是把资源、环境、生物、生态等领域的数据汇聚起来,让大家有一个共享的数据中心,然后在这个基础上,建设一个数字地球科学平台。此外,为了满足数据更新需求,还将发射地球科学小卫星进行实时监测,这些卫星不仅可以白天成像,也可以夜间成像。”
郭华东表示,在上述3个项目的基础之上,将围绕数字“一带一路”、全景美丽中国、生物多样性与生态安全、三维信息海洋、时空三极环境五个方向来为国家的决策发力。同时,探索形成大数据驱动、多学科融合的科学发现新范式,力求在资源环境、海洋、三极、生物多样性及生态安全领域取得重大突破。
汇聚高水平专家建成科学中心,与国内外相关机构互联互通、共享数据
此专项将汇聚中科院资源、环境、生物生态领域和大数据技术方面的专家,具有很强的创新能力。
郭华东说:“我们计划用5年时间在北京怀柔科学城建成国际地球大数据科学中心,由数字地球科学展示中心、地球大数据决策支持中心、地球大数据学科交叉平台以及地球大数据共享中心四部分组成。中心将与国际、国内重要的地球大数据组织机构进行互联互通与数据共享,成为国际地球大数据研究的引领者。”
中心建成后,预计卫星数据接收处理、影像更新用时小于2小时;热点区域应急信息服务用时小于1小时;应急监测精准信息产品生产用时小于10小时。
郭华东表示,“地球大数据科学工程”专项除了突破一系列技术瓶颈问题之外,最重要的就是要做好数据共享。实现高水平的数据共享,不仅能避免数据采集和生产等大量重复性劳动和经费投入,更重要的是保障了数据的规范性和科学性,让科研人员的精力更高效地投入到数据的分析、应用和科学发现中。“数据共享做得好不好,很大程度上决定了本专项的成效。”
郭华东坦言,目前这方面最难推动。“今后专项一定要在数据共享的机制体制上下功夫,研究提出科学、合理、可行的数据共享制度与政策,要充分考虑数据提供者的利益,调动大家共享数据的主动性和积极性,从而保障该科学工程的活力与生命力。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27