
地球大数据 中国正发力
近年来,大数据已全方位进入经济社会和人们的生活当中。大数据为科学研究带来了新的方法论,帮助人们用全新的模式实现科学发现。中国对大数据资源的整合和利用,也在重视和发力。
12日,中国科学院A类战略性先导科技专项“地球大数据科学工程”正式启动。该专项以建成具有全球影响力、国际化、开放式的国际地球大数据科学中心为目标,致力于推动并实现地球大数据创新、重大科学发现和一站式全方位宏观决策支持。
我国拥有海量地球大数据,集成共享能发挥更大应用价值
地球大数据是具有空间属性的地球科学领域大数据,尤其指基于空间技术生成的海量对地观测数据,具有海量、多源以及更精准、更科学、更及时的独特优势。
据统计,全球数据总量每年都在倍增,预计到2025年将达到163ZB,中国数据量将约占全球数据总量的20%。越来越多的国家认识到,大数据蕴藏巨大价值和潜力,是与矿产资源、水利资源一样重要的战略资源。然而,数据海量、碎片分散、应用低效是当前中国乃至整个地球科学界面临的严峻问题。
以中科院为例。目前,全院地球大数据资源总量约38PB+8000万条记录,已形成210余个数据库。预计未来5年内,新增数据量将超过10PB。中国科学院党组书记、院长白春礼说:“尽管中科院数据资源很丰富,但存在资源分散、重复布局、成果凝练与影响力不足等一系列问题,数据开放共享政策不够完善、共享效果差强人意。”
同时,我国经济社会发展面临的很多重大问题,如气候变化、自然灾害、资源短缺、生态退化、水土污染、大气雾霾等,都需要多学科深度交叉联合,开展系统和综合的研究。“在资源、环境、生物、生态等多学科、跨领域交叉场景下,孤立使用单一特定领域的已有挖掘分析理论和方法已经难以有效推动科学发现,需要综合应用这些方法,系统性、整体性去解决某些重大科学问题。”白春礼说,“大数据将为这些研究提供新的技术手段、创新视角,促进新的科研范式的形成。”
基于此,中国科学院决定启动“地球大数据科学工程”先导专项,以提升中科院乃至国家层面地球科学领域海量数据的集成共享水平,从而发挥更大的应用价值。
探索形成大数据驱动、多学科融合的科学发现新范式
“地球大数据科学工程”专项为期5年(一期建设期),设置地球大数据科学工程总体、地球科学小卫星、大数据云平台、数字“一带一路”、全景美丽中国、生物多样性与生态安全、三维信息海洋、时空三极环境、数字地球科学平台共9个项目。
专项负责人、中科院遥感与数字地球研究所郭华东院士说:“地球大数据科学工程总体、地球科学小卫星和大数据云平台这3个项目属于综合型基础设施项目。地球大数据云平台,就是把资源、环境、生物、生态等领域的数据汇聚起来,让大家有一个共享的数据中心,然后在这个基础上,建设一个数字地球科学平台。此外,为了满足数据更新需求,还将发射地球科学小卫星进行实时监测,这些卫星不仅可以白天成像,也可以夜间成像。”
郭华东表示,在上述3个项目的基础之上,将围绕数字“一带一路”、全景美丽中国、生物多样性与生态安全、三维信息海洋、时空三极环境五个方向来为国家的决策发力。同时,探索形成大数据驱动、多学科融合的科学发现新范式,力求在资源环境、海洋、三极、生物多样性及生态安全领域取得重大突破。
汇聚高水平专家建成科学中心,与国内外相关机构互联互通、共享数据
此专项将汇聚中科院资源、环境、生物生态领域和大数据技术方面的专家,具有很强的创新能力。
郭华东说:“我们计划用5年时间在北京怀柔科学城建成国际地球大数据科学中心,由数字地球科学展示中心、地球大数据决策支持中心、地球大数据学科交叉平台以及地球大数据共享中心四部分组成。中心将与国际、国内重要的地球大数据组织机构进行互联互通与数据共享,成为国际地球大数据研究的引领者。”
中心建成后,预计卫星数据接收处理、影像更新用时小于2小时;热点区域应急信息服务用时小于1小时;应急监测精准信息产品生产用时小于10小时。
郭华东表示,“地球大数据科学工程”专项除了突破一系列技术瓶颈问题之外,最重要的就是要做好数据共享。实现高水平的数据共享,不仅能避免数据采集和生产等大量重复性劳动和经费投入,更重要的是保障了数据的规范性和科学性,让科研人员的精力更高效地投入到数据的分析、应用和科学发现中。“数据共享做得好不好,很大程度上决定了本专项的成效。”
郭华东坦言,目前这方面最难推动。“今后专项一定要在数据共享的机制体制上下功夫,研究提出科学、合理、可行的数据共享制度与政策,要充分考虑数据提供者的利益,调动大家共享数据的主动性和积极性,从而保障该科学工程的活力与生命力。”
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28